
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


\(\frac{x^2-3x+9}{2x-3}>2\Leftrightarrow\frac{x^2-3x+9}{2x-3}-2>0\)
\(\Leftrightarrow\frac{x^2-3x+9-4x+6}{2x-3}>0\Leftrightarrow\frac{x^2-7x+15}{2x-3}>0\)
\(\Rightarrow2x-3>0\Leftrightarrow x>\frac{3}{2}\)vì \(x^2-7x+15=x^2-2.\frac{7}{2}+\frac{49}{4}+\frac{11}{4}=\left(x-\frac{7}{2}\right)^2+\frac{11}{4}>0\)
\(\frac{x^2-3x+9}{2x-3}>2\)
\(\frac{x^2-3x+9}{2x-3}-2>0\)
\(\frac{x^2-3x+9-4x+6}{2x-3}>0\)
\(\frac{x^2-7x+15}{2x-3}>0\)
ta có \(x^2-7x+15\)
\(\left(x+\frac{7}{2}\right)^2+\frac{11}{4}>0\)
để \(\frac{x^2-7x+15}{2x-3}\)
\(< =>2x-3>0\)
\(x>\frac{3}{2}\)



1
Với \(\left\{{}\begin{matrix}x\ne2\\x\ne-1\\x\ne\sqrt{\dfrac{1}{2}}\end{matrix}\right.\)
\(M=\left(\dfrac{x-1}{2-x}-\dfrac{x^2}{x^2-x-2}\right)\left(\dfrac{x^2+2x+1}{4x^4-4x^2+1}\right)\\ =\left(\dfrac{\left(x-1\right)\left(x+1\right)}{\left(2-x\right)\left(x+1\right)}+\dfrac{x^2}{\left(x+1\right)\left(2-x\right)}\right)\left(\dfrac{\left(x+1\right)^2}{\left(2x^2-1\right)^2}\right)\\ =\dfrac{x^2-1+x^2}{\left(x+1\right)\left(2-x\right)}\left(\dfrac{\left(x+1\right)^2}{\left(2x^2-1\right)^2}\right)\\ =\dfrac{\left(2x^2-1\right)\left(x+1\right)^2}{\left(x+1\right)\left(2-x\right)\left(2x^2-1\right)^2}\\ =\dfrac{x+1}{\left(2-x\right)\left(2x^2-1\right)}\)
2
Để M = 0 thì \(\dfrac{x+1}{\left(2-x\right)\left(2x^2-1\right)}=0\Rightarrow x+1=0\Rightarrow x=-1\) (loại)
Vậy không có giá trị x thỏa mãn M = 0
1) \(M=\left(\dfrac{x-1}{2-x}-\dfrac{x^2}{x^2-x-2}\right)\cdot\dfrac{x^2+2x+1}{4x^4-4x^2+1}\) (ĐK: \(\left\{{}\begin{matrix}x\ne2\\x\ne-1\\x\ne\sqrt{\dfrac{1}{2}}\end{matrix}\right.\))
\(M=\left(\dfrac{-\left(x-1\right)}{x-2}-\dfrac{x^2}{\left(x-2\right)\left(x+1\right)}\right)\cdot\dfrac{\left(x+1\right)^2}{\left(2x^2-1\right)^2}\)
\(M=\left(\dfrac{-\left(x-1\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}-\dfrac{x^2}{\left(x-2\right)\left(x+1\right)}\right)\cdot\dfrac{\left(x+1\right)^2}{\left(2x^2-1\right)^2}\)
\(M=\left(\dfrac{-\left(x^2-1\right)-x^2}{\left(x-2\right)\left(x+1\right)}\right)\cdot\dfrac{\left(x+1\right)^2}{\left(2x^2-1\right)^2}\)
\(M=\left(\dfrac{-x^2+1-x^2}{\left(x-2\right)\left(x+1\right)}\right)\cdot\dfrac{\left(x+1\right)^2}{\left(2x^2-1\right)^2}\)
\(M=\dfrac{-2x^2+1}{\left(x-2\right)\left(x+1\right)}\cdot\dfrac{\left(x+1\right)^2}{\left(2x^2-1\right)^2}\)
\(M=\dfrac{-\left(2x^2-1\right)\left(x+1\right)^2}{\left(x-2\right)\left(x+1\right)\left(2x^2-1\right)^2}\)
\(M=\dfrac{-\left(x+1\right)}{\left(x-2\right)\left(2x^2-1\right)}\)
2) Ta có: \(M=0\)
\(\Rightarrow\dfrac{-\left(x+1\right)}{\left(x-2\right)\left(2x^2-1\right)}=0\)
\(\Leftrightarrow-\left(x+1\right)=0\)
\(\Leftrightarrow-x=1\)
\(\Leftrightarrow x=-1\left(ktm\right)\)

ta co :
(x+y+z).(x/(z+y)+y/(z+x)+z/(x+y))=1
ban cu phan tich cai bieu thuc tren thi ket qua thu duoc se la:
x^2/(z+y)+y^2/(x+z)+z^2/(x+y)+z+x+y=1
ma x+y+z=1===>dpcm


1B:
a: \(x^2+2xy+x+2y\)
=x(x+2y)+(x+2y)
=(x+2y)(x+1)
b: \(2xy+yz+2x+z\)
=y(2x+z)+(2x+z)
=(2x+z)(y+1)
c: \(y^2-2y-z^2-2z\)
\(=\left(y^2-z^2\right)-2\left(y+z\right)\)
=(y+z)(y-z)-2(y+z)
=(y+z)(y-z-2)
d: \(x^3-x-y+y^3\)
\(=\left(x^3+y^3\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(x^2-xy+y^2\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(x^2-xy+y^2-1\right)\)
2A:
a: \(x^2-2x+1-y^2\)
\(=\left(x-1\right)^2-y^2\)
=(x-1-y)(x-1+y)
b: \(x^2-y^2+4y-4\)
\(=x^2-\left(y^2-4y+4\right)\)
\(=x^2-\left(y-2\right)^2\)
=(x-y+2)(x+y-2)
c: \(y^2+6y-4z^2+9\)
\(=\left(y^2+6y+9\right)-\left(2z\right)^2\)
\(=\left(y+3\right)^2-\left(2z\right)^2=\left(y+3+2z\right)\left(y+3-2z\right)\)
d: \(x^2-y^2+10yz-25z^2\)
\(=x^2-\left(y^2-10yz+25z^2\right)\)
\(=x^2-\left(y-5z\right)^2=\left(x-y+5z\right)\left(x+y-5z\right)\)
2B:
a: \(4x^2-4x+1-25y^2\)
\(=\left(4x^2-4x+1\right)-\left(5y\right)^2\)
\(=\left(2x-1\right)^2-\left(5y\right)^2=\left(2x-1-5y\right)\left(2x-1+5y\right)\)
b: \(9y^2-z^2+6z-9\)
\(=\left(3y\right)^2-\left(z^2-6z+9\right)\)
\(=\left(3y\right)^2-\left(z-3\right)^2\)
=(3y-z+3)(3y+z-3)
c: \(x^2-4z^2+4x+4\)
\(=\left(x^2+4x+4\right)-\left(2z\right)^2\)
\(=\left(x+2\right)^2-\left(2z\right)^2\)
=(x+2+2z)(x+2-2z)
d: \(4x^2-y^2+4xz+z^2\)
\(=\left(4x^2+4xz+z^2\right)-y^2\)
\(=\left(2x+z\right)^2-y^2\)
=(2x+z-y)(2x+z+y)
3A:
a: \(x^2-2xy+y^2-a^2+2ab-b^2\)
\(=\left(x^2-2xy+y^2\right)-\left(a^2-2ab+b^2\right)\)
\(=\left(x-y\right)^2-\left(a-b\right)^2\)
=(x-y-a+b)(x-y+a-b)
c: \(x^3+y^3+3x^2-3xy+3y^2\)
\(=\left(x+y\right)\left(x^2-xy+y^2\right)+3\left(x^2-xy+y^2\right)\)
\(=\left(x^2-xy+y^2\right)\left(x+y+3\right)\)

18, \(\frac{x}{2}+\frac{x^2}{8}=0\Leftrightarrow4x+x^2=0\Leftrightarrow x\left(x+4\right)=0\Leftrightarrow x=-4;x=0\)
19, \(4-x=2\left(x-4\right)^2\Leftrightarrow\left(4-x\right)-2\left(4-x\right)^2=0\)
\(\Leftrightarrow\left(4-x\right)\left[1-2\left(4-x\right)\right]=0\Leftrightarrow\left(4-x\right)\left(-7+2x\right)=0\Leftrightarrow x=4;x=\frac{7}{2}\)
20, \(\left(x^2+1\right)\left(x-2\right)+2x-4=0\Leftrightarrow\left(x^2+1\right)\left(x-2\right)+2\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+3>0\right)=0\Leftrightarrow x=2\)
21, \(x^4-16x^2=0\Leftrightarrow x^2\left(x-4\right)\left(x+4\right)=0\Leftrightarrow x=0;x=\pm4\)
22, \(\left(x-5\right)^3-x+5=0\Leftrightarrow\left(x-5\right)^3-\left(x-5\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left[\left(x-5\right)^2-1\right]=0\Leftrightarrow\left(x-5\right)\left(x-6\right)\left(x-4\right)=0\Leftrightarrow x=4;x=5;x=6\)
23, \(5\left(x-2\right)-x^2+4=0\Leftrightarrow5\left(x-2\right)-\left(x-2\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(5-x-2\right)=0\Leftrightarrow x=2;x=3\)
1: Sửa đề: Qua N kẻ đường song song với PC cắt AB tại F
Xét tứ giác CNFP có NF//PC
nên CNFP là hình thang