">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 7 2019
Phương pháp thực hiện
Ta thực hiện theo các bước:
Bước 1: Chuyển phương trình ban đầu của Parabol (P) về dạng chính tắc (P): y2 = ±2px hoặc (P): x2 = ±2py.
Bước 2: Xét các khả năng:
Dạng 1: Parabol (P): y2 = 2px (p>0)
Các thuộc tính của (P) gồm: cac-thuoc-tinh-cua-parabol-1-png.1308
  • Đỉnh O(0. 0),
  • Tiêu điểm F (p2, 0),
  • Đường chuẩn (d): x = -p2,
  • Parabol, nhận Ox làm trục đối xứng, đồ thị ở bên phải Ox.
Dạng 2: Parabol (P): y2 = -2px (p>0)
Các thuộc tính của (P) gồm: cac-thuoc-tinh-cua-parabol-2-png.1309
  • Đỉnh O(0. 0),
  • Tiêu điểm F (-p2, 0),
  • Đường chuẩn (d): x = p2,
  • Parabol, nhận Ox làm trục đối xứng, đồ thị ở bên trái Ox.
Dạng 3: Parabol (P): x2 = 2py (p>0)
Các thuộc tính của (P) gồm: cac-thuoc-tinh-cua-parabol-3-png.1310
  • Đỉnh O(0. 0),
  • Tiêu điểm F (0, p2),
  • Đường chuẩn (d): y = -p2,
  • Parabol, nhận Oy làm trục đối xứng, đồ thị có hướng lên trên.
Dạng 4: Parabol (P): x2 = - 2py (p>0)
Các thuộc tính của (P) gồm: cac-thuoc-tinh-cua-parabol-4-png.1311
  • Đỉnh O(0. 0),
  • Tiêu điểm F (0, -p2),
  • Đường chuẩn (d): y = p2,
  • Parabol, nhận Ox làm trục đối xứng, đồ thị có hướng xuống dưới.
Chú ý: Trong trường hợp phương trình của (P) có dạng: (P): (y - β)2 = ±2p(x - α) hoặc (P): (x - α)2 = ±2p(y - β).
ta thực hiện phép tịnh tiến hệ trục Oxy theo vectơ OI−→ với I(α, β) thành hệ trục IXY với công thức đổi trục:
{X=x−αY=y−β ⇔ {x=X+αy=Y+β
ta được: (P): Y2 = ±2pX hoặc (P): X2 = ±2pY.
từ đó chỉ ra các thuộc tính của (P) trong hệ trục IXY rồi suy ra các thuộc tính của (P) trong hệ trục Oxy.


Thí dụ 1. Chứng tỏ rằng phương trình Ax2 + By = 0, với A, B ≠ 0 là phương trình của một Parabol có đỉnh O(0, 0), nhận Oy làm trục đối xứng. Tìm tiêu điểm và phương trình đường chuẩn của Parabol đó.

Giải​

Viết lại phương trình dưới dạng:
Ax2 = - By ⇔ x2 = - BAy ⇔−BA=2p x2 = 2py
đó chính là phương trình của một Parabol có đỉnh O(0, 0), nhận Oy làm trục đối xứng. Parabol đó có:

  • Tiêu điểm F(0; p) = (0; - B2A).
  • Phương trình đường chuẩn y = - p ⇔ y = B2A.

Thí dụ 2. Chuyển phương trình Parabol (P) về dạng chính tắc, từ đó xác định các thuộc tính của nó và vẽ hình, biết (P) : y2 + 2y - 4x - 3 = 0.

Giải​

- Bạn đọc tự vẽ hình
Chuyển phương trình của (P) về dạng: (P): (y + 1)2 = 4(x + 1)
Thực hiện phép tịnh tiến hệ trục toạ độ Oxy theo vectơ OS−→ với S(-1, -2) thành hệ trục SXY, với công thức đổi trục:


{X=x+1Y=y+1 ⇔ {x=X−1y=Y−1
Khi đó: (P): Y2 = 4X ⇒ p = 2.
Khi đó trong hệ trục SXY, (P) có các thuộc tính:

  • Đỉnh S.
  • Trục đối xứng SX chứa tiêu điểm F(1, 0).
  • Phương trình đường chuẩn (d): X = -1.

Do đó, trong hệ trục Oxy, (P) có các thuộc tính:
Đỉnh S(-1, -1).

  • Trục đối xứng là đường thẳng y + 1 = 0 chứa tiêu điểm F(0, -1).
  • Phương trình đường chuẩn (d): x + 2 = 0.

Thí dụ 3. Cho họ đường cong (Pm) : y2 - 2my - 2mx + m2 = 0.
Tìm điều kiện của m để (Pm) là phương trình một Parabol, khi đó:
a. Tìm quĩ tích đỉnh của họ (Pm).
b. Tìm quĩ tích tiêu điểm của họ (Pm).

Giải​

Chuyển phương trình của (Pm) về dạng:
(Pm): (y - m)2 = 2mx
Để phương trình trên là phương trình của một Parabôn điều kiện là m ≠ 0.
Thực hiện phép tịnh tiến hệ trục toạ độ Oxy theo vectơ OS−→ với S(0; m) thành hệ trục SXY, với công thức đổi trục:
{X=xY=y−m ⇔ {x=Xy=Y+m
Khi đó: (P): Y2 = 2mX ⇒ p = m.
Khi đó trong hệ trục SXY, (Pm) có các thuộc tính:

  • Đỉnh S.
  • Trục đối xứng SX chứa tiêu điểm F(m2, 0).
  • Phương trình đường chuẩn (d): X = -m2.

Do đó trong hệ trục Oxy, (Pm) có các thuộc tính:

  • Đỉnh S(0; m).
  • Trục đối xứng là y - m = 0 chứa tiêu điểm F(m2; m).
  • Phương trình đường chuẩn (d): x + m2 = 0.

a. Quĩ tích đỉnh của họ (Pm).
S : {x=0y=m ⇒ x = 0.
Vậy quĩ tích đỉnh của (Pm) thuộc trục tung.

b. Quĩ tích tiêu điểm của họ (Pm).
F: {x=m2y=m ⇒ y = 2x ⇔ 2x - y = 0.
Vậy quĩ tích tiêu điểm của (Pm) thuộc đường thẳng 2x - y = 0.

24 tháng 7 2019

dài dữ

20 tháng 5 2017

Ôn tập cuối năm môn Hình học

20 tháng 5 2017

Phương pháp tọa độ trong mặt phẳng

20 tháng 5 2017

Phương pháp tọa độ trong mặt phẳng

26 tháng 4 2017

F1 F2 A1 A2 B2 B1 y x o

Viết lại phương trình (E):\(\dfrac{x^2}{25}+\dfrac{y^2}{9}=1\)

a) Từ phương trình ta có: a2=25=>a=5 =>A1(-5;0) A2(5;0)

b2=9=>b=3 =>B1(0;-3) B2(0;3)

c2=a2-b2=25-9=16 =>c=4

=> F1(-4;0) F2(4;0)

b) Giả sử tọa độ điểm M(m;n)

MF1 góc với MF2 => (m+4)(m-4) + n2=0

<=> m2+n2=16 =>9m2+9n2=144(1)

Do M thuộc (E) nên 9m2+25n2=225(2)

Trừ vế với vế của (2) cho (1) ta được 16n2=81

=> \(n=_-^+\dfrac{9}{4}\)

với n\(=\dfrac{9}{4}\)=> m=\(\dfrac{5\sqrt{7}}{4}\)

với n\(=-\dfrac{9}{4}\)=> m\(=\dfrac{5\sqrt{7}}{4}\)

Vậy tọa độ M thỏa mãn là \(\left(\dfrac{5\sqrt{7}}{4};\dfrac{9}{4}\right)\)\(\left(\dfrac{5\sqrt{7}}{4};-\dfrac{9}{4}\right)\)

8 tháng 5 2016

\(d\left(I;AB\right)=\frac{\left|\frac{1}{2}+2\right|}{\sqrt{1^2+\left(-2\right)^2}}=\frac{\sqrt{5}}{2}\Rightarrow AD=2d\left(I;AB\right)=\sqrt{5}\)và \(AB=2AD=2\sqrt{5}\)

Do đó \(IA=IB=IC=ID=\frac{1}{2}AC=\frac{5}{2}\)

Gọi \(\omega\) là đường tròn tâm I, bán kính \(R=IA\) thế thì  \(\omega\)  có phương trình \(\left(x-\frac{1}{2}\right)^2+y^2=\frac{25}{4}\)

Do vậy tọa độ của A, B là nghiệm của hệ :

\(\begin{cases}\left(x-\frac{1}{2}\right)^2+y^2=\frac{25}{4}\\x-2y+2=0\end{cases}\)

Giải hệ thu được \(A\left(-2;0\right);B\left(2;2\right)\) (do A có hoành độ âm), từ đó , do I là trung điểm của AC và BD suy ra \(C\left(3;0\right);D\left(-1;-2\right)\)

20 tháng 5 2017

Ôn tập cuối năm môn Hình học

NV
10 tháng 4 2021

Đề bài sai rồi bạn

Thay tọa độ A vào pt BD thấy thỏa mãn. Suy ra A thuộc BD, điều này hoàn toàn vô lý :)

20 tháng 5 2017

Phương pháp tọa độ trong mặt phẳng

Phương pháp tọa độ trong mặt phẳng

30 tháng 3 2017

a) Ta có: a2 = 25 => a = 5 độ dài trục lớn 2a = 10

b2 = 9 => b = 3 độ dài trục nhỏ 2a = 6

c2 = a2 – b2 = 25 - 9 = 16 => c = 4

Vậy hai tiêu điểm là : F1(-4 ; 0) và F2(4 ; 0)

Tọa độ các đỉnh A1(-5; 0), A2(5; 0), B1(0; -3), B2(0; 3).

b)

4x2 + 9y2 = 1 <=> + = 1

a2= => a = => độ dài trục lớn 2a = 1

b2 = => b = => độ dài trục nhỏ 2b =

c2 = a2 – b2

= - = => c =

F1(- ; 0) và F2( ; 0)

A1(-; 0), A2(; 0), B1(0; - ), B2(0; ).

c) Chia 2 vế của phương trình cho 36 ta được :

=> + = 1

Từ đây suy ra: 2a = 6. 2b = 4, c =\(\sqrt{5}\)

=> F1(-\(\sqrt{5}\) ; 0) và F2(\(\sqrt{5}\) ; 0)

A1(-3; 0), A2(3; 0), B1(0; -2), B2(0; 2).