Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

thực hiện phép tính chia
\(a.\left(8x^4y^2-2x^3y^2+3x^2y^3\right):\left(2xy^2\right)\) (điều kiện: \(x;y\ne0)\)
\(=4x^3-x^2+\frac32xy\)
\(b.\left(-6x^3+5x^2y+4xy^2\right):\left(\frac14x\right)\) (điều kiện: \(x\ne0)\)
\(=-24x^2+20xy+16y^2\)
\(c.\left\lbrack7\cdot\left(y-x\right)^5+6\left(y-x\right)^4-2\left(x-y\right)^3+\left(y-x\right)^2\right\rbrack:\left(x-y\right)^2\) (điều kiện: \(x\ne y)\)
\(=7\left(y-x\right)^3+6\left(y-x\right)^2+2\left(y-x\right)+1\)
\(d.M\cdot\frac13xy^2=5x^4y^3-3x^3y^2+12x^2y\)
\(\Rightarrow M=\left(5x^4y^3-3x^3y^2+12x^2y\right):\left(\frac13xy^2\right)\)
\(M=15x^3y-9x^2+\frac{36x}{y}\)
\(e.\left(-6x^5y^3\right):M=2x^2y\)
\(\Rightarrow M=\left(-6x^5y^3\right):\left(2x^2y\right)\)
\(M=-3x^3y^2\)
\(\left(21x^7y^6-15x^6y^4+9x^4y^3\right):M\) (*)
thay M vào (*) ta được:
\(\left(21x^7y^6-15x^6y^4+9x^4y^3\right):\left(-3x^3y^2\right)\)
\(=-7x^4y^4+5x^3y^2-3xy\)

a: Xét tứ giác ABEC có
M là trung điểm chung của AE và BC
=>ABEC là hình bình hành
b: Xét ΔBHF vuông tại H và ΔBHA vuông tại H có
BH chung
HF=HA
Do đó: ΔBHF=ΔBHA
=>BF=BA
mà BA=CE
nên BF=CE

a: ta có: EI⊥BF
AC⊥BF
Do đó: EI//AC
=>\(\hat{IEB}=\hat{ACB}\) (hai góc đồng vị)
mà \(\hat{ABC}=\hat{ACB}\) (ΔABC cân tại A)
nên \(\hat{KBE}=\hat{IEB}\)
Xét ΔKBE vuông tại K và ΔIEB vuông tại I có
BE chung
\(\hat{KBE}=\hat{IEB}\)
Do đó: ΔKBE=ΔIEB
=>EK=BI
b: Điểm D ở đâu vậy bạn?

10) đkxđ: \(x\ne\pm3\)
\(\frac{7}{a^2-9}+\frac{5}{a-3}+\frac{1}{a+3}=\frac{7}{\left(a-3\right)\left(a+3\right)}+\frac{5\cdot\left(a+3\right)}{\left(a+3\right)\left(a-3\right)}+\frac{a-3}{\left(a+3\right)\left(a-3\right)}\)
\(=\frac{7+5a+15+a-3}{\left(a+3\right)\left(a-3\right)}=\frac{6a+19}{\left(a+3\right)\left(a-3\right)}\)
11) đkxđ: \(x\ne-1\)
\(\frac{2x-1}{x^3+1}+\frac{2x}{x^2-x+1}-\frac{x}{x+1}+2\)
\(=\frac{2x-1}{\left(x+1\right)\left(x^2-x+1\right)}+\frac{2x\cdot\left(x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}-\frac{x\cdot\left(x^2-x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}+\frac{2\left(x+1\right)\left(x^2-x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}\)
\(\) \(=\frac{2x-1+2x^2+2x-x^3+x^2-x+2x^3+2}{\left(x+1\right)\left(x^2-x+1\right)}\)
\(=\frac{x^3+3x^2+3x+1}{\left(x+1\right)\left(x^2-x+1\right)}\)
\(=\frac{\left(x+1\right)^3}{\left(x+1\right)\left(x^2-x+1\right)}\)
\(=\frac{\left(x+1\right)^2}{x^2-x+1}\)
13) đkxđ: \(x\ne\pm\frac32\)
\(\frac{5}{2x-3}+\frac{2}{2x+3}-\frac{2x+5}{9-4x^2}\)
\(=\frac{5\cdot\left(2x+3\right)}{\left(2x-3\right)\left(2x+3\right)}+\frac{2\cdot\left(2x-3\right)}{\left(2x-3\right)\left(2x+3\right)}+\frac{2x+5}{\left(2x-3\right)\left(2x+3\right)}\)
\(=\frac{10x+15+4x-6+2x+5}{\left(2x-3\right)\left(2x+3\right)}\)
\(=\frac{16x+14}{\left(2x-3\right)\left(2x+3\right)}\)

Bài 6:
a: \(A=n^2\left(n-1\right)+2n\left(1-n\right)\)
\(=n^2\left(n-1\right)-2n\left(n-1\right)\)
\(=\left(n-1\right)\left(n^2-2n\right)=n\left(n-1\right)\left(n-2\right)\)
Vì n;n-1;n-2 là ba số nguyên liên tiếp
nên n(n-1)(n-2)⋮3!
=>n(n-1)(n-2)⋮6
=>A⋮6
b: \(M=\left(4x+1\right)\left(12x-1\right)\left(3x+2\right)\left(x+1\right)-4\)
\(=\left(12x^2+12x-x-1\right)\left(12x^2+8x+3x+2\right)-4\)
\(=\left(12x^2+11x-1\right)\left(12x^2+11x+2\right)-4\)
\(=\left(12x^2+11x\right)^2+2\left(12x^2+11x\right)-\left(12x^2+11x\right)-2-4\)
\(=\left(12x^2+11x\right)^2+\left(12x^2+11x\right)-6\)
\(=\left(12x^2+11x+3\right)\left(12x^2+11x-2\right)\)
Bài 4:
a: \(A=x\left(x-y\right)^2-y\left(x-y\right)^2+xy^2-x^2y\)
\(=\left(x-y\right)^2\cdot\left(x-y\right)+xy\left(y-x\right)\)
\(=\left(x-y\right)^3-xy\left(x-y\right)\)
Khi x-y=5 và xy=4 thì \(A=5^3-4\cdot5=125-20=105\)
b: \(B=65^2-35^2+83^2-17^2\)
\(=\left(65-35\right)\left(65+35\right)+\left(83-17\right)\left(83+17\right)\)
\(=100\cdot30+100\cdot66=100\cdot96=9600\)
Bài 3:
a: \(4x\cdot\left(x+3\right)-x-3=0\)
=>4x(x+3)-(x+3)=0
=>(x+3)(4x-1)=0
=>\(\left[\begin{array}{l}x+3=0\\ 4x-1=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=-3\\ x=\frac14\end{array}\right.\)
b: \(x^2+4x=0\)
=>x(x+4)=0
=>\(\left[\begin{array}{l}x=0\\ x+4=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=0\\ x=-4\end{array}\right.\)
c: \(9x^2-\left(2x-1\right)^2=0\)
=>\(\left(3x\right)^2-\left(2x-1\right)^2=0\)
=>(3x-2x+1)(3x+2x-1)=0
=>(x+1)(5x-1)=0
=>\(\left[\begin{array}{l}x+1=0\\ 5x-1=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=-1\\ x=\frac15\end{array}\right.\)
d: \(\left(x^3-1\right)-\left(x-1\right)\left(x^2-5\right)=0\)
=>\(\left(x-1\right)\left(x^2+x+1\right)-\left(x-1\right)\left(x^2-5\right)=0\)
=>\(\left(x-1\right)\left(x^2+x+1-x^2+5\right)=0\)
=>(x-1)(x+6)=0
=>\(\left[\begin{array}{l}x-1=0\\ x+6=0\end{array}\right.=>\left[\begin{array}{l}x=1\\ x=-6\end{array}\right.\)

1B:
a: \(x^2+2xy+x+2y\)
=x(x+2y)+(x+2y)
=(x+2y)(x+1)
b: \(2xy+yz+2x+z\)
=y(2x+z)+(2x+z)
=(2x+z)(y+1)
c: \(y^2-2y-z^2-2z\)
\(=\left(y^2-z^2\right)-2\left(y+z\right)\)
=(y+z)(y-z)-2(y+z)
=(y+z)(y-z-2)
d: \(x^3-x-y+y^3\)
\(=\left(x^3+y^3\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(x^2-xy+y^2\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(x^2-xy+y^2-1\right)\)
2A:
a: \(x^2-2x+1-y^2\)
\(=\left(x-1\right)^2-y^2\)
=(x-1-y)(x-1+y)
b: \(x^2-y^2+4y-4\)
\(=x^2-\left(y^2-4y+4\right)\)
\(=x^2-\left(y-2\right)^2\)
=(x-y+2)(x+y-2)
c: \(y^2+6y-4z^2+9\)
\(=\left(y^2+6y+9\right)-\left(2z\right)^2\)
\(=\left(y+3\right)^2-\left(2z\right)^2=\left(y+3+2z\right)\left(y+3-2z\right)\)
d: \(x^2-y^2+10yz-25z^2\)
\(=x^2-\left(y^2-10yz+25z^2\right)\)
\(=x^2-\left(y-5z\right)^2=\left(x-y+5z\right)\left(x+y-5z\right)\)
2B:
a: \(4x^2-4x+1-25y^2\)
\(=\left(4x^2-4x+1\right)-\left(5y\right)^2\)
\(=\left(2x-1\right)^2-\left(5y\right)^2=\left(2x-1-5y\right)\left(2x-1+5y\right)\)
b: \(9y^2-z^2+6z-9\)
\(=\left(3y\right)^2-\left(z^2-6z+9\right)\)
\(=\left(3y\right)^2-\left(z-3\right)^2\)
=(3y-z+3)(3y+z-3)
c: \(x^2-4z^2+4x+4\)
\(=\left(x^2+4x+4\right)-\left(2z\right)^2\)
\(=\left(x+2\right)^2-\left(2z\right)^2\)
=(x+2+2z)(x+2-2z)
d: \(4x^2-y^2+4xz+z^2\)
\(=\left(4x^2+4xz+z^2\right)-y^2\)
\(=\left(2x+z\right)^2-y^2\)
=(2x+z-y)(2x+z+y)
3A:
a: \(x^2-2xy+y^2-a^2+2ab-b^2\)
\(=\left(x^2-2xy+y^2\right)-\left(a^2-2ab+b^2\right)\)
\(=\left(x-y\right)^2-\left(a-b\right)^2\)
=(x-y-a+b)(x-y+a-b)
c: \(x^3+y^3+3x^2-3xy+3y^2\)
\(=\left(x+y\right)\left(x^2-xy+y^2\right)+3\left(x^2-xy+y^2\right)\)
\(=\left(x^2-xy+y^2\right)\left(x+y+3\right)\)

Bài 2:
a: ĐKXĐ: x∉{2;-2}
b: \(A=\frac{3x}{x-2}-\frac{2}{x+2}+\frac{2x-4}{x^2-4}\)
\(=\frac{3x}{x-2}-\frac{2}{x+2}+\frac{2\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\)
\(=\frac{3x}{x-2}-\frac{2}{x+2}+\frac{2}{x+2}=\frac{3x}{x-2}\)
c: Thay x=-5 vào A, ta được:
\(A=\frac{3\cdot\left(-5\right)}{-5-2}=\frac{-15}{-7}=\frac{15}{7}\)
d: Để A nguyên thì 3x⋮x-2
=>3x-6+6⋮x-2
=>6⋮x-2
=>x-2∈{1;-1;2;-2;3;-3;6-6}
=>x∈{1;2;4;0;5;-1;8;-4}
Kết hợp ĐKXĐ, ta được: x∈{1;4;0;5;-1;8;-4}
Bài 1:
a: \(A=x^2+10x+25\)
\(=x^2+2\cdot x\cdot5+5^2=\left(x+5\right)^2\)
b: \(B=x^2-y^2+8x-8y\)
=(x-y)(x+y)+8(x-y)
=(x-y)(x+y+8)
c: \(C=x^2+4x-5\)
\(=x^2+5x-x-5\)
=x(x+5)-(x+5)
=(x+5)(x-1)

Bài 1:
a: \(A=x^2-4x+9\)
\(=x^2-4x+4+5\)
\(=\left(x-2\right)^2+5\ge5\forall x\)
Dấu '=' xảy ra khi x-2=0
=>x=2
b: \(B=x^2-x+1\)
\(=x^2-2\cdot x\cdot\frac12+\frac14+\frac34\)
\(=\left(x-\frac12\right)^2+\frac34\ge\frac34\forall x\)
Dấu '=' xảy ra khi \(x-\frac12=0\)
=>\(x=\frac12\)
Bài 2:
a: \(M=4x-x^2+3\)
\(=-\left(x^2-4x-3\right)\)
\(=-\left(x^2-4x+4-7\right)\)
\(=-\left(x-2\right)^2+7\le7\forall x\)
Dấu '=' xảy ra khi x-2=0
=>x=2
b: \(P=2x-2x^2-5\)
\(=-2\cdot\left(x^2-x+\frac52\right)\)
\(=-2\left(x^2-x+\frac14+\frac94\right)\)
\(=-2\left(x-\frac12\right)^2-\frac92\le-\frac92\forall x\)
Dấu '=' xảy ra khi \(x-\frac12=0\)
=>\(x=\frac12\)
Bài 3:
a: \(A=x^2-4x+24\)
\(=x^2-4x+4+20\)
\(=\left(x-2\right)^2+20\ge20\forall x\)
Dấu '=' xảy ra khi x-2=0
=>x=2
b: \(B=2x^2-8x+1\)
\(=2\left(x^2-4x+\frac12\right)\)
\(=2\left(x^2-4x+4-\frac72\right)\)
\(=2\left(x-2\right)^2-7\ge-7\forall x\)
Dấu '=' xảy ra khi x-2=0
=>x=2
c: \(C=3x^2+x-1\)
\(=3\left(x^2+\frac13x-\frac13\right)\)
\(=3\left(x^2+2\cdot x\cdot\frac16+\frac{1}{36}-\frac{13}{36}\right)\)
\(=3\left(x+\frac16\right)^2-\frac{13}{12}\ge-\frac{13}{12}\forall x\)
Dấu '=' xảy ra khi \(x+\frac16=0\)
=>\(x=-\frac16\)
Bài 4:
a: \(A=-5x^2-4x+1\)
\(=-5\left(x^2+\frac45x-\frac15\right)\)
\(=-5\left(x^2+2\cdot x\cdot\frac25+\frac{4}{25}-\frac{9}{25}\right)\)
\(=-5\left(x+\frac25\right)^2+\frac95\le\frac95\forall x\)
Dấu '=' xảy ra khi \(x+\frac25=0\)
=>\(x=-\frac25\)
b: \(B=-3x^2+x+1\)
\(=-3\left(x^2-\frac13x-\frac13\right)\)
\(=-3\left(x^2-2\cdot x\cdot\frac16+\frac{1}{36}-\frac{13}{36}\right)\)
\(=-3\left(x-\frac16\right)^2+\frac{13}{12}\le\frac{13}{12}\forall x\)
Dấu '=' xảy ra khi \(x-\frac16=0\)
=>\(x=\frac16\)
19: \(x^3-4x^2+12x-27\)
\(=\left(x^3-27\right)-4x\left(x-3\right)\)
\(=\left(x-3\right)\left(x^2+3x+9\right)-4x\left(x-3\right)\)
\(=\left(x-3\right)\left(x^2+3x+9-4x\right)=\left(x-3\right)\left(x^2-x+9\right)\)
21: \(x^2-9y^2+4x-12y\)
=(x-3y)(x+3y)+4(x-3y)
=(x-3y)(x+3y+4)
22: \(a^2+2a+2b-b^2\)
\(=\left(a^2-b^2\right)+2\left(a+b\right)\)
=(a+b)(a-b)+2(a+b)
=(a+b)(a-b+2)
23: \(x^2+9y^2-9+6xy\)
\(=\left(x^2+6xy+9y^2\right)-9\)
\(=\left(x+3y\right)^2-3^2\)
=(x+3y-3)(x+3y+3)
24: \(x^3-3x^2-3x+1\)
\(=\left(x^3+1\right)-3x\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2-x+1\right)-3x\cdot\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2-x+1-3x\right)=\left(x+1\right)\left(x^2-4x+1\right)\)
25: \(4\left(x+y\right)^2-9\left(x-y\right)^2\)
\(=\left(2x+2y\right)^2-\left(3x-3y\right)^2\)
=(2x+2y-3x+3y)(2x+2y+3x-3y)
=(-x+5y)(5x-y)
26: \(25y^2-x^2-6x-9\)
\(=25y^2-\left(x^2+6x+9\right)\)
\(=\left(5y\right)^2-\left(x+3\right)^2\)
=(5y-x-3)(5y+x+3)
27: \(x^3+4x^2-8x-8\)
\(=\left(x^3-8\right)+4x^2-8x\)
\(=\left(x-2\right)\left(x^2+2x+4\right)+4x\left(x-2\right)\)
\(=\left(x-2\right)\left(x^2+2x+4+4x\right)=\left(x-2\right)\left(x^2+6x+4\right)\)
28: \(x^3+27-\left(2x+1\right)\left(x+3\right)\)
\(=\left(x+3\right)\left(x^2-3x+9\right)-\left(2x+1\right)\left(x+3\right)\)
\(=\left(x+3\right)\left(x^2-3x+9-2x-1\right)=\left(x+3\right)\left(x^2-5x+8\right)\)
29: \(\left(x^2+y\right)^2-2x^2-2y+1\)
\(=\left(x^2+y\right)^2-2\left(x^2+y\right)+1\)
\(=\left(x^2+y-1\right)^2\)
e cảm ơn ạ