K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

P
Phong
CTVHS
8 tháng 8 2023

b) \(B=\dfrac{2^{10}\cdot52+2^{12}\cdot65}{2^{11}\cdot52}+\dfrac{\left(-3\right)^{10}\cdot11+3^9\cdot15}{3^8\cdot2^3\cdot6}\)

\(B=\dfrac{2^{10}\cdot2^2\cdot13+2^{12}\cdot5\cdot13}{2^{11}\cdot13\cdot2^2}+\dfrac{\left(-3\right)^{10}\cdot11+3^9\cdot3\cdot5}{3^8\cdot2^3\cdot2\cdot3}\)

\(B=\dfrac{2^{12}\cdot13+2^{12}\cdot13\cdot5}{2^{13}\cdot13}+\dfrac{3^{10}\cdot11+3^{10}\cdot5}{3^9\cdot2^4}\)

\(B=\dfrac{2^{12}\cdot13\cdot\left(1+5\right)}{2^{13}\cdot13}+\dfrac{3^{10}\cdot\left(11+5\right)}{3^9\cdot2^4}\)

\(B=\dfrac{1+5}{2}+\dfrac{3\cdot16}{2^4}\)

\(B=3+3\)

\(B=6\)

8 tháng 8 2023

cảm on bẹn nha

 

Bài 23:

a+4b⋮13

=>10(a+4b)⋮13

=>10a+40b⋮13

=>10a+b+39b⋮13

mà 39b⋮13

nên 10a+b⋮13

27 tháng 8

bạn nên chụp rõ hơn để lời giải có kết quả tốt nhất nhé bạn!

14 tháng 10 2023

a)

\(175\cdot19+38\cdot175+43\cdot175\\ =175\cdot19+175\cdot38+175\cdot43\\ =175\cdot\left(19+38+43\right)\\ =175\cdot100\\ =17500\)

b)

\(125\cdot75+125\cdot13-80\cdot125\\ =125\cdot75+125\cdot13-125\cdot80\\ =125\cdot\left(75+13-80\right)\\ =125\cdot10\\ =125\cdot8\\ =1000\)

14 tháng 10 2023

a, 175. 19 + 38. 175 + 43. 175

= 175. 19 + 175. 38 + 175. 43

= 175.(19 + 38 + 43)

= 175. 100

= 17500 

29 tháng 1 2024

Chiều rộng của mảnh vườn hình chữ nhật là:

            \(\dfrac{21}{4}\) : \(\dfrac{7}{3}\) = \(\dfrac{9}{4}\) (m)

Chu vi của mảnh vườn hìn chữ nhật là:

          (\(\dfrac{21}{4}\) + \(\dfrac{9}{4}\)) x 2 = 15 (m)

Diện tích của mảnh vườn hình chữ nhật là:

            \(\dfrac{21}{4}\) x \(\dfrac{9}{4}\) = \(\dfrac{189}{16}\) (m2)

b; Số tiền thu được khi trồng hoa để bán trên mảnh đất hình chữ nhật đó là:

             80 000 x \(\dfrac{189}{16}\) = 945 000 (đồng)

KL...

             

 

 

29 tháng 1 2024

Bài 5:

a, Chiều rộng mảnh vườn:

\(\dfrac{21}{4}:\dfrac{7}{3}=\dfrac{9}{4}\left(m\right)\)

Chu vi mảnh đất:

\(2\times\left(\dfrac{21}{4}+\dfrac{9}{4}\right)=15\left(m\right)\)

Diện tích mảnh đất:

\(\dfrac{21}{4}\times\dfrac{9}{4}=\dfrac{189}{16}\left(m^2\right)\)

b, Số tiền thu được khi bán hoa:

\(\dfrac{189}{16}\times80000=945000\left(đồng\right)\)

bài 3:

a: \(C=5+5^2+5^3+\cdots+5^{20}\)

\(=5\left(1+5+5^2+\cdots+5^{19}\right)\) ⋮5

b: \(C=5+5^2+5^3+\cdots+5^{20}\)

\(=\left(5+5^2\right)+\left(5^3+5^4\right)+\cdots+\left(5^{19}+5^{20}\right)\)

\(=5\left(1+5\right)+5^3\left(1+5\right)+\cdots+5^{19}\left(1+5\right)\)

\(=6\left(5+5^3+\cdots+5^{19}\right)\) ⋮6

c: \(C=5+5^2+5^3+\cdots+5^{20}\)

\(=\left(5+5^2+5^3+5^4\right)+\left(5^5+5^6+5^7+5^8\right)+\cdots+\left(5^{17}+5^{18}+5^{19}+5^{20}\right)\)

\(=5\left(1+5+5^2+5^3\right)+5^5\left(1+5+5^2+5^3\right)+\cdots+5^{17}\left(1+5+5^2+5^3\right)\)

\(=\left(1+5+5^2+5^3\right)\left(5+5^5+\cdots+5^{17}\right)=156\cdot\left(5+5^5+\cdots+5^{17}\right)\)

\(=13\cdot12\cdot\left(5+5^5+\cdots+5^{17}\right)\) ⋮13

Bài 2:

a: \(B=3+3^2+3^3+\cdots+3^{120}\)

\(=3\left(1+3+3^2+3^3+\cdots+3^{119}\right)\) ⋮3

b: \(B=3+3^2+3^3+\cdots+3^{120}\)

\(=\left(3+3^2\right)+\left(3^3+3^4\right)+\cdots+\left(3^{119}+3^{120}\right)\)

\(=3\left(1+3\right)+3^3\left(1+3\right)+\cdots+3^{119}\left(1+3\right)\)

\(=4\left(3+3^3+\cdots+3^{119}\right)\) ⋮4

c: \(B=3+3^2+3^3+\cdots+3^{120}\)

\(=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+\cdots+\left(3^{118}+3^{119}+3^{120}\right)\)

\(=3\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)+\cdots+3^{118}\left(1+3+3^2\right)\)

\(=13\left(3+3^4+\cdots+3^{118}\right)\) ⋮13

Bài 1:

a: \(A=2+2^2+2^3+\ldots+2^{20}\)

\(=2\left(1+2+2^2+\cdots+2^{19}\right)\) ⋮2

b: \(A=2+2^2+2^3+\ldots+2^{20}\)

\(=\left(2+2^2\right)+\left(2^3+2^4\right)+\cdots+\left(2^{19}+2^{20}\right)\)

\(=2\left(1+2\right)+2^3\left(1+2\right)+\cdots+2^{19}\left(1+2\right)\)

\(=3\left(2+2^3+\cdots+2^{19}\right)\) ⋮3

c: \(A=2+2^2+2^3+\ldots+2^{20}\)

\(=\left(2+2^2+2^3+2^4\right)+\left(2^5+2^6+2^7+2^8\right)+\cdots+\left(2^{17}+2^{18}+2^{19}+2^{20}\right)\)

\(=2\left(1+2+2^2+2^3\right)+2^5\left(1+2+2^2+2^3\right)+\cdots+2^{17}\left(1+2+2^2+2^3\right)\)

\(=15\left(2+2^5+\ldots+2^{17}\right)=5\cdot3\cdot\left(2+2^5+\cdots+2^{17}\right)\) ⋮5

23 tháng 8

Bài 1:

a; A = 2 + \(2^2\) + 2\(^3\) + ... + 2\(^{20}\)

A = 2 x (1+ 2+ 2\(^2\) + ... + 2\(^{19}\))

A ⋮ 2(đpcm)

b; A = 2 + \(2^2\) + 2\(^3\) + ... + 2\(^{20}\)

Xét dãy số: 1; 2;...; 20 đây là dãy số cách đều với khoảng cách là:

2 - 1 = 1

Số số hạng của dãy số trên là:

(20 - 1) : 1+ 1 = 20(số)

Vì 20 : 2 = 10

Vậy nhóm hai số hạng liên tiếp của A vào nhau khi đó ta có:

A = (2+ 2\(^2\)) + (2\(^3\) + 2\(^4\)) + ... + (2\(^{19}+\) 2\(^{20}\))

A = 2.(1 + 2) + 2\(^3\).(1+ 2) + ... + 2\(^{19}\) .(1 + 2)

A = 2.3 + 2\(^3\).3 + ... + 2\(^{19}\).3

A = 3.(2+ 2\(^3\) + ... + 2\(^{19}\))

A ⋮ 3 (đpcm)

c; A = 2 + \(2^2\) + 2\(^3\) + ... + 2\(^{20}\)

Xét dãy số: 1; 2; 3;...; 20

Dãy số trên có 20 số hạng:

Vì 20 : 4 = 5

Vậy nhóm 4 hạng tử của A thành một nhóm khi đó:

A = (2+ 2\(^2\) + 2\(^3\) + 2\(^4\)) + ... + (2\(^{17}+2^{18}+2^{19}+2^{20}\))

A = 2.(1 + 2 + 2\(^2\) + 2\(^3\)) + ... + 2\(^{17}\).(1 + 2 + 2\(^2\) + 2\(^3\))

A = (1+ 2 +2\(^2\) + 2\(^3\)).(2+ ...+ 2\(^{17}\))

A = (1 + 2 + 4 + 8).(2+ ...+ 2\(^{17}\))

A = (3+ 4 + 8).(2+ ...+ 2\(^{17}\))

A = (7 + 8)(2+ ...+ 2\(^{17}\))

A = 15.(2+ ...+ 2\(^{17}\))

A ⋮ 5(đpcm)


Câu 8:

a:Sửa đề: \(4+4^2+\cdots+4^{2025}\)

Ta có: \(4+4^2+\cdots+4^{2025}\)

\(=\left(4+4^2+4^3\right)+\left(4^4+4^5+4^6\right)+\cdots+\left(4^{2023}+4^{2024}+4^{2025}\right)\)

\(=4\left(1+4+4^2\right)+4^4\left(1+4+4^2\right)+\cdots+4^{2023}\left(1+4+4^2\right)\)

\(=21\left(4+4^4+\cdots+4^{2023}\right)\) ⋮21

b: \(5+5^2+5^3+5^4+\cdots+5^{2024}\)

\(=\left(5+5^2\right)+\left(5^3+5^4\right)+\cdots+\left(5^{2023}+5^{2024}\right)\)

\(=\left(5+5^2\right)+5^2\left(5+5^2\right)+\cdots+5^{2022}\left(5+5^2\right)\)

\(=30\left(1+5^2+\cdots+5^{2022}\right)\) ⋮30

Câu 7:

a: \(A=2+2^2+2^3+\cdots+2^{99}\)

=>\(2A=2^2+2^3+\cdots+2^{100}\)

=>\(2A-A=2^2+2^3+\cdots+2^{100}-2-2^2-\cdots-2^{99}\)

=>\(A=2^{100}-2\)

b: \(B=1-7+7^2-7^3+\cdots+7^{48}-7^{49}\)

=>\(7B=7-7^2+7^3-7^4+\cdots+7^{49}-7^{50}\)

=>\(7B+B=7-7^2+7^3-7^4+\cdots+7^{49}-7^{50}+1-7+7^2-7^3+\cdots+7^{48}-7^{49}\)

=>\(8B=-7^{50}+1\)

=>\(B=\frac{-7^{50}+1}{8}\)

Câu 4:

a: \(x^3=125\)

=>\(x^3=5^3\)

=>x=5

b: \(11^{x+1}=121\)

=>\(11^{x+1}=11^2\)

=>x+1=2

=>x=2-1=1

c: \(\left(x-5\right)^3=27\)

=>\(\left(x-5\right)^3=3^3\)

=>x-5=3

=>x=3+5=8

d: \(4^5:4^{x}=16\)

=>\(4^{x}=4^5:16=4^5:4^2=4^3\)

=>x=3

e: \(5^{x-1}\cdot8=1000\)

=>\(5^{x-1}=1000:8=125=5^3\)

=>x-1=3

=>x=3+1=4

f: \(2^{x}+2^{x+3}=72\)

=>\(2^{x}+2^{x}\cdot8=72\)

=>\(2^{x}\cdot9=72\)

=>\(2^{x}=\frac{72}{9}=8=2^3\)

=>x=3

g: \(\left(3x+1\right)^3=343\)

=>\(\left(3x+1\right)^3=7^3\)

=>3x+1=7

=>3x=6

=>x=2

h: \(3^{x}+3^{x+2}=270\)

=>\(3^{x}+3^{x}\cdot9=270\)

=>\(10\cdot3^{x}=270\)

=>\(3^{x}=\frac{270}{10}=27=3^3\)

=>x=3

i: \(25^{2x+4}=125^{x+3}\)

=>\(\left(5^2\right)^{2x+4}=\left(5^3\right)^{x+3}\)

=>\(5^{4x+8}=5^{3x+9}\)

=>4x+8=3x+9

=>x=1

Câu 6:

1 giờ=3600 giây

Số tế bào hồng cầu được tạo ra sau mỗi giờ là:

\(25\cdot10^5\cdot3600=25\cdot36\cdot10^7=900\cdot10^7=9\cdot10^9\) =9 tỉ (tế bào)

S
28 tháng 8

câu 5:

a. \(16^{16}=\left(2^4\right)^{16}=2^{64}\)

\(64^{11}=\left(2^6\right)^{11}=2^{66}\)

\(2^{66}>2^{64}\) nên \(64^{11}>16^{16}\)

b. \(625^5=\left(5^4\right)^5=5^{20}\)

\(125^7=\left(5^3\right)^7=5^{21}\)

\(5^{20}<5^{21}\Rightarrow625^5<125^7\)

c. \(3^{36}=\left(3^3\right)^{12}=27^{12}\)

\(5^{24}=\left(5^2\right)^{12}=25^{12}\)

\(27^{12}>25^{12}\Rightarrow3^{36}>5^{24}\)

S
17 tháng 8

a) diện tích △ ADG là:

20 x 9 : 2 = 90 (cm2)

diện tích △ ABE là:

14 x 8 : 2 = 56 (cm2)

diện tích hình chữ nhật ABCD là:

20 x 14 = 280 (cm2)

diện tích tứ giác AECG là:

280 - 56 - 90 = 134 (cm2)

b) tỉ số diện tích △ ABE và diện tích △ ADG là:

\(\frac{56}{90}=\frac{28}{45}\)

5 tháng 12 2023

2/

Xét phân số \(\dfrac{2n-3}{n+1}=\dfrac{2n+2-5}{n+1}=\dfrac{2n+2}{n+1}-\dfrac{5}{n+1}=\dfrac{2\left(n+1\right)}{n+1}-\dfrac{5}{n+1}=2-\dfrac{5}{n+1}\)

\(n\in Z\Rightarrow2n-3\inƯ\left(5\right)=\left\{-1;-5;1;5\right\}\)

Ta có bảng:

2n - 3-1-515
n1-124

Vậy \(n\in\left\{-1;1;2;4\right\}\)

5 tháng 12 2023

1/

(x + 1) + (x + 3) + (x + 5) + ... + (x + 999) = 500

<=> (x + x + x + ... + x) + (1 + 3 + 5 + ... + 999) = 500

Xét tổng A = 1 + 3 + 5 + ... + 999

Số số hạng của A là: (999 - 1) : 2 + 1 = 500 

Tổng A là: (999 + 1) x 500 : 2 = 250 000

Do A có 500 số hạng nên có 500 ẩn x.

Vậy ta có: 500x + 250 000 = 500

=> 500x = -249 500

=> x = 499

Vậy x = 499

Ta có: \(10A=\frac{10^{21}-60}{10^{21}-6}=\frac{10^{21}-6-54}{10^{21}-6}=1-\frac{54}{10^{21}-6}\)

\(10B=\frac{10^{22}-60}{10^{22}-6}=\frac{10^{22}-6-54}{10^{22}-6}=1-\frac{54}{10^{22}-6}\)

Ta có: \(10^{21}-6<10^{22}-6\)

=>\(\frac{54}{10^{21}-6}>\frac{54}{10^{22}-6}\)

=>\(-\frac{54}{10^{21}-6}<-\frac{54}{10^{22}-6}\)

=>\(-\frac{54}{10^{21}-6}+1<-\frac{54}{10^{22}-6}+1\)

=>10A<10B

=>A<B