Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Web có hơn 600 nghìn câu hỏi mà toàn thấy câu hỏi giống nhau với câu thấy nhiều đến chảy hết nước mắt rồi
![](https://rs.olm.vn/images/avt/0.png?1311)
Đề đúng \(3+\frac{a}{2b}+\frac{2b}{3c}+\frac{3c}{a}\ge a+2b+3c+\frac{1}{a}+\frac{1}{2b}+\frac{1}{3c}\)
Ta thấy:
\(a\cdot2b\cdot3c=1\) nên ta đặt \(a=\frac{y}{x};2b=\frac{z}{y};3c=\frac{x}{z}\)
Khi đó \(VT\ge VP\Leftrightarrow\frac{3xyz+x^3+y^3+z^3}{xyz}\)
\(\ge\frac{x^2y+y^2x+y^2z+z^2y+x^2z+z^2x}{xyz}\)
\(\Leftrightarrow3xyz+x^3+y^3+z^3-x^2y-y^2x-y^2z-z^2y-z^2x-x^2z\ge0\)
\(\Leftrightarrow x\left(x-y\right)\left(x-z\right)+y\left(y-z\right)\left(y-x\right)+z\left(z-x\right)\left(z-y\right)\ge0\)
Đúng theo Bđt Schur
Vậy Bđt đc chứng minh
![](https://rs.olm.vn/images/avt/0.png?1311)
ta có:\(\frac{a}{a+1}=1-\frac{1}{a+1};\frac{2b}{2+b}=2-\frac{4}{2+b};\frac{3c}{3+c}=3-\frac{9}{3+c}\)
\(\Rightarrow\frac{a}{1+a}+\frac{2b}{2+b}+\frac{3c}{3+c}\le\left(1+2+3\right)-\left(\frac{1}{a+1}+\frac{4}{b+2}+\frac{9}{c+3}\right)\)
\(\le6-\frac{\left(1+2+3\right)^2}{a+b+c+1+2+3}=6-\frac{36}{7}=\frac{6}{7}\left(Q.E.D\right)\)
\(M=\left(a-\frac{6}{a+1}\right)+\left(2b-\frac{3}{b+1}\right)+\left(3c-\frac{2}{c+1}\right)\)
\(M=\left(a+2b+3c\right)-6\left(\frac{1}{a+1}+\frac{1}{2b+2}+\frac{1}{3c+3}\right)\)
\(M\le6-\frac{6.\left(1+1+1\right)^2}{a+1+2b+2+3c+3}\)
\(M\le6-\frac{6.9}{6+6}=6-\frac{9}{2}=\frac{3}{2}\)
Đẳng thức xảy ra khi \(a=3;b=1;c=\frac{1}{3}\)