\(\sqrt{x^6}=3.\)Giải pt

Cảm ơ...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: \(\sqrt{x^6}=3\)

\(\Leftrightarrow\sqrt{\left(x^3\right)^2}=3\)

\(\Leftrightarrow\left|x^3\right|=3\)

\(\Leftrightarrow\left[{}\begin{matrix}x^3=3\\x^3=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\sqrt[3]{3}\\x=\sqrt[3]{-3}\end{matrix}\right.\)

Vậy: \(S=\left\{\sqrt[3]{3};\sqrt[3]{-3}\right\}\)

6 tháng 5 2017

X(X+1) + 12CAN(X+1) =36 .DAT CAN(X+1)=T >=0 . SUYRA X+1=T^2 SUYRA X=T^2-1 .PT TRO THANH : (T^2-1)T^2 +12T -36=0          T^4 - T^2 +12T -36 =0 ..T^4 -4T^2 + 3T^2 -6T + 18T-36=0..T^2(T^2-4) + 3T(T-2) +18(T-2) =0..(T-2)(T^3+2T^2 +3T +18)=0                        den day phan h da thuc la ra dap an.

4 tháng 5 2017

bạn xem lại đầu bài đi xem 36 hay -36

23 tháng 8 2016

1/ (x + 1)(x - √x - 6)

6 tháng 2 2016

2) năm mới chúc nhau niềm vui ( cho bài dễ thôi )

Vt >/ 3 + 2 = 5

 VP </ 5 

dấu = xảy ra  khi x =-1

6 tháng 2 2016

Dùng Hằng Đẳng Thức thôi bạn ạ

24 tháng 7 2019

Hỏi đáp Toán

24 tháng 7 2019

Nguyễn Thị Thu Sương: câu b tớ không biết làm rồi bucminhbucminh

2 tháng 2 2016

vào CHTT xem đi mr lazy giải rùi đó

26 tháng 1 2016

(*) với k = 0 pt <=> \(x-2=0\Leftrightarrow x=2\) ( TM )

(*) với k khác 0 . pt là pt bậc 2 

\(\Delta=\left(1-2k\right)^2-4k\left(k-2\right)=4k^2-4k+1-4k^2+8k=4k+1\)

Để pt có nghiệm hữu tỉ khi 4k + 1 là số chính phương 

=> \(4k+1=a^2\) (1) Vì 4k + 1 là số lẻ => a^2 là số lẻ => a là số lẻ => a = 2n + 1 ( n thuộc Z ) thay vào (1) ta có 

\(4k+1=\left(2n+1\right)^2=4n^2+4n+1\Leftrightarrow4k=4n\left(n+1\right)\Leftrightarrow k=n\left(n+1\right)\)

Vậy với k = n(n+1) thì pt luôn có nghiệm hữu tỉ ( n thuộc Z ) 

26 tháng 1 2016

khó wa !!!!!!!!!!!!!!!!!!!!!!!!!!

mình ko giải được!!!!!!!!!!!!!!!!!!!!!!!

bạn tich cho minh nha!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

6 tháng 2 2016

Áp dụng BĐT cô si cho 2 số ko âm \(\sqrt{a}\) và \(\sqrt{b}\) ta được:

\(\sqrt{a}+\sqrt{b}\ge2\sqrt{\sqrt{ab}}\)

Suy ta: \(\frac{2\sqrt{ab}}{\sqrt{a}+\sqrt{b}}\le\frac{2\sqrt{ab}}{2\sqrt{\sqrt{ab}}}=\sqrt{\sqrt{ab}}=\sqrt[4]{ab}\)

=>điều cần chứng minh

15 tháng 9 2018

TA CÓ:

\(\sqrt{x-1-4\sqrt{x-1}+4}+\sqrt{x-1+6\sqrt{x-1}+9}=5\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}-2\right)^2}+\sqrt{\left(\sqrt{x-1}-3\right)^2}=5\)

\(\Leftrightarrow\sqrt{x-1}-2+\sqrt{x-1}-3=5\Leftrightarrow2\sqrt{x-1}=10\Leftrightarrow\sqrt{x-1}=5\)

\(\Leftrightarrow x-1=25\Leftrightarrow x=26\)

15 tháng 9 2018

ĐKXĐ: \(x\ge1\)

PT (=) \(\sqrt{\left(\sqrt{x-1}-2\right)^2}+\sqrt{\left(\sqrt{x-1}+3\right)^2}=5\) 

     (=) \(\sqrt{x-1}-2+\sqrt{x-1}+3=5\) (=)  \(2\sqrt{x-1}=4\)(=) \(\sqrt{x-1}=2\)(=) X = 5 (nhận)