
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a: (x+2)(2x-1)+(x-1)(3-2x)=3
=>\(2x^2-x+4x-2+3x-2x^2-3+2x=3\)
=>8x-5=3
=>8x=8
=>x=1
b: \(\left(2x-1\right)\left(2x+1\right)-\left(x+2\right)\left(4x-1\right)=15\)
=>\(4x^2-1-\left(4x^2-x+8x-2\right)=15\)
=>\(4x^2-1-\left(4x^2+7x-2\right)=15\)
=>\(4x^2-1-4x^2-7x+2=15\)
=>-7x+1=15
=>-7x=14
=>x=-2

a: ta có: \(\hat{xAB}+\hat{yBA}=45^0+135^0=180^0\)
mà hai góc này là hai góc ở vị trí trong cùng phía
nên Ax//By
b: Gọi BM là tia đối của tia By
Khi đó, ta có: \(\hat{MBA}+\hat{yBA}=180^0\) (hai góc kề bù)
=>\(\hat{MBA}=180^0-135^0=45^0\)
Ta có: tia BM nằm giữa hai tia BA và BC
=>\(\hat{ABM}+\hat{CBM}=\hat{ABC}\)
=>\(\hat{CBM}=75^0-45^0=30^0\)
Ta có: \(\hat{MBC}=\hat{BCz}\left(=30^0\right)\)
mà hai góc này là hai góc ở vị trí so le trong
nên By//Cz

a: ta có: \(\hat{tKy}+\hat{tKm}=180^0\) (hai góc kề bù)
=>\(\hat{tKm}=180^0-150^0=30^0\)
Ta có: \(\hat{tNz}=\hat{tKm}\left(=30^0\right)\)
mà hai góc này là hai góc ở vị trí đồng vị
nên Nz//Km
b: Ta có: \(\hat{tKy}+\hat{tKM}+\hat{yKM}=360^0\)
=>\(\hat{yKM}=360^0-90^0-150^0=120^0\)
Ta có: \(\hat{yKM}=\hat{KMn}\left(=120^0\right)\)
mà hai góc này là hai góc ở vị trí so le trong
nên Ky//Mn

a: Ta có: \(3x+\left(x-\frac{9}{20}\right)=-\frac{13}{40}\)
=>\(3x+x-\frac{9}{20}=-\frac{13}{40}\)
=>\(4x=-\frac{13}{40}+\frac{9}{20}=-\frac{13}{40}+\frac{18}{40}=\frac{5}{40}=\frac18\)
=>\(x=\frac18:4=\frac{1}{32}\)
b: \(x+\left(\frac14x-2,5\right)=-\frac{11}{20}\)
=>\(x+\frac14x-2,5=-\frac{11}{20}\)
=>\(1,25x=-0,55+2,5=1,95\)
=>\(x=\frac{1.95}{1.25}=\frac{195}{125}=\frac{39}{25}\)
c: \(\frac35x+\left(x+0,5\right)=-\frac{13}{15}\)
=>\(\frac35x+x+0,5=-\frac{13}{15}\)
=>\(\frac85x=-\frac{13}{15}-0,5=-\frac{26}{30}-\frac{15}{30}=-\frac{41}{30}\)
=>\(x=-\frac{41}{30}:\frac85=-\frac{41}{30}\cdot\frac58=\frac{-41}{6\cdot8}=-\frac{41}{48}\)
d: \(-\frac23x+\left(4x-\frac67\right)=\frac{9}{21}\)
=>\(-\frac23x+4x-\frac67=\frac37\)
=>\(\frac{10}{3}x=\frac37+\frac67=\frac97\)
=>\(x=\frac97:\frac{10}{3}=\frac97\cdot\frac{3}{10}=\frac{27}{70}\)
bài 11: câu a:
\(3x+\left(x-\frac{9}{20}\right)=-\frac{13}{40}\)
\(3x+x-\frac{9}{20}=-\frac{13}{40}\)
\(4x=-\frac{13}{40}+\frac{9}{20}\)
\(4x=-\frac{13}{40}+\frac{18}{40}\)
\(4x=\frac{5}{40}\)
\(4x=\frac18\)
\(x=\frac18:4=\frac18\cdot\frac14=\frac{1}{32}\)
b. \(x+\left(\frac14x-2,5\right)=-\frac{11}{20}\)
\(x+\frac14x-2,5=-\frac{11}{20}\)
\(\frac54x-2,5=-\frac{11}{20}\)
\(\frac54x=-\frac{11}{20}+2,5\)
\(\frac54x=\frac{39}{20}\)
\(x=\frac{39}{20}:\frac54=\frac{39}{20}\cdot\frac45=\frac{39}{25}\)
c. \(\frac35x+\left(x+0,5\right)=-\frac{13}{15}\)
\(\frac35x+x+0,5=-\frac{13}{15}\)
\(\frac85x+\frac12=-\frac{13}{15}\)
\(\frac85x=-\frac{13}{15}-\frac12\)
\(\frac85x=-\frac{41}{30}\)
\(x=-\frac{41}{30}:\frac85=-\frac{41}{30}\cdot\frac58=-\frac{41}{48}\)
\(d.-\frac23x+\left(4x-\frac67\right)=\frac{9}{21}\)
\(-\frac23x+4x-\frac67=\frac{9}{21}\)
\(\frac{10}{3}x=\frac97\)
\(x=\frac97:\frac{10}{3}=\frac97\cdot\frac{3}{10}=\frac{27}{70}\)

2.
Gọi độ dài 3 cạnh tam giác là a;b;c với a;b;c là các số nguyên dương
Do chu vi tam giác là 22 nên ta có: a+b+c=22
Do các cạnh tỉ lệ với 2;4;5 nên: \(\frac{a}{2}=\frac{b}{4}=\frac{c}{5}\)
Áp dụng t.c dãy tỉ số bằng nhau:
\(\frac{a}{2}=\frac{b}{4}=\frac{c}{5}=\frac{a+b+c}{2+4+5}=\frac{22}{11}=2\)
a=2.2=4
b=4.2=8
c=5.2=10
3.
Gọi số cây lớp 7A trồng là a và số cây lớp 7B trồng là b (a;b là các số nguyên dương)
Do tỉ số cây trồng của lớp 7A và 7B là 0,8 nên:
\(\frac{a}{b}=0,8=\frac45\Rightarrow\frac{a}{4}=\frac{b}{5}\)
Do lớp 7B trồng nhiều hơn 20 cây nên: b-a =20
Áp dụng t/c dãy tỉ số bằng nhau:
\(\frac{a}{4}=\frac{b}{5}=\frac{b-a}{5-4}=\frac{20}{1}=20\)
a=20.4=80
b=20.5=100
Vậy...
4.
Gọi số học sinh giỏi 3 khối 6;7;8 lần lượt là a;b;c (a;b;c là các số nguyên dương)
Do số học sinh giỏi 3 khối tỉ lệ với 2;3;5 nên:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}\)
Do tổng số hs giỏi 2 khối 6 và 8 nhiều hơn số hs giỏi khối 7 là 28 hs nên:
a+c-b=28
Áp dụng t/c dãy tỉ số bằng nhau:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=\frac{a+c-b}{2+5-3}=\frac{28}{4}=7\)
a=7.2=14
b=7.3=21
c=7.5=35
5.
Gọi số kg giấy vụn 3 lớp thu được lần lượt là a;b;c (kg) với a;b;c nguyên dương
Do số kd giấy vụn tỉ lệ với 3;7;5 nên:
\(\frac{a}{3}=\frac{b}{7}=\frac{c}{5}\)
Do 3 lần số giấy vụn lớp 7A nhiều hơn lớp 7B là 30kg nên:
3a-b=30
Áp dụng t.c dãy tỉ số bằng nhau:
\(\frac{a}{3}=\frac{b}{7}=\frac{c}{5}=\frac{3a-b}{3.3-7}=\frac{30}{2}=15\)
a=15.3=45
b=15.7=105
c=15.5=75

d: \(\left(-\frac34+\frac25\right):\frac37+\left(\frac35-\frac14\right):\frac37\)
\(=\left(-\frac34+\frac25+\frac35-\frac14\right):\frac37\)
\(=\left(1-1\right):\frac37=0\)
e: \(\frac59:\left(\frac{1}{11}-\frac{5}{22}\right)+\frac59:\left(\frac{1}{15}-\frac23\right)\)
\(=\frac59:\left(\frac{2}{22}-\frac{5}{22}\right)+\frac59:\left(\frac{1}{15}-\frac{10}{15}\right)\)
\(=\frac59:\frac{-3}{22}+\frac59:\frac{-9}{15}\)
\(=\frac59\cdot\frac{-22}{3}+\frac59\cdot\frac{-5}{3}=\frac59\left(-\frac{22}{3}-\frac53\right)=\frac59\cdot\frac{-27}{3}=-5\)

a: \(\left(-\frac54x+3,25\right)\left\lbrack\frac35-\left(-\frac52x\right)\right\rbrack=0\)
=>\(\left(\frac54x-\frac{13}{4}\right)\left(\frac52x+\frac35\right)=0\)
=>\(\left[\begin{array}{l}\frac54x-\frac{13}{4}=0\\ \frac52x+\frac35=0\end{array}\right.\Rightarrow\left[\begin{array}{l}\frac54x=\frac{13}{4}\\ \frac52x=-\frac35\end{array}\right.\Rightarrow\left[\begin{array}{l}x=\frac{13}{4}:\frac54=\frac{13}{5}\\ x=-\frac35:\frac52=-\frac{6}{25}\end{array}\right.\)
b: \(\left(-\frac72x+1,75\right)\left\lbrack\frac45-\left(-\frac53x\right)\right\rbrack=0\)
=>\(\left[\begin{array}{l}-\frac72x+1,75=0\\ \frac45-\left(-\frac53x\right)=0\end{array}\right.\Longrightarrow\left[\begin{array}{l}-\frac72x=-1,75=-\frac74\\ \frac53x=-\frac45\end{array}\right.\)
=>\(\left[\begin{array}{l}x=\frac{-7}{4}:\frac{-7}{2}=\frac24=\frac12\\ x=-\frac45:\frac53=-\frac45\cdot\frac35=-\frac{12}{25}\end{array}\right.\)
c: \(\left(x^2-4\right)\left(x+\frac27\right)=0\)
=>\(\left[\begin{array}{l}x^2-4=0\\ x+\frac27=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x^2=4\\ x=-\frac27\end{array}\right.\Rightarrow\left[\begin{array}{l}x=2\\ x=-2\\ x=-\frac27\end{array}\right.\)
d: \(\left(25-x^2\right)\left(5x-\frac59\right)=0\)
=>\(\left[\begin{array}{l}25-x^2=0\\ 5x-\frac59=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x^2=25\\ 5x=\frac59\end{array}\right.\Rightarrow\left[\begin{array}{l}x=5\\ x=-5\\ x=\frac19\end{array}\right.\)

a: Ta có: \(\hat{CAD}=\hat{ADE}\left(=55^0\right)\)
mà hai góc này là hai góc ở vị trí so le trong
nên AC//DE
b: ta có: \(\hat{AFB}=\hat{ADC}\left(=45^0\right)\)
mà hai góc này là hai góc ở vị trí đồng vị
nên BE//CD
Đặt \(A=1+\frac12+\frac{1}{2^2}+\cdots+\frac{1}{2^{2023}}+\frac{1}{2^{2024}}\)
\(2A=2+1+\frac12+\frac{1}{2^2}+\cdots+\frac{1}{2^{2022}}+\frac{1}{2^{2023}}\)
\(2A-A=2-\frac{1}{2^{2024}}\)
\(A=2-\frac{1}{2^{2024}}\)
Thay vào pt ban đầu:
\(\left(x+\frac12\right)^{2024}=2-\left(2-\frac{1}{2^{2024}}\right)\)
\(\left(x+\frac12\right)^{2024}=\frac{1}{2^{2024}}=\left(\frac12\right)^{2024}\)
\(x+\frac12=\frac12\) hoặc \(x+\frac12=-\frac12\)
\(x=0\) hoặc \(x=-1\)