![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
A = \(\left(-2\right).\left(-1\dfrac{1}{2}\right).\left(-1\dfrac{1}{3}\right).\left(-1\dfrac{1}{4}\right)...\left(-1\dfrac{1}{214}\right)\)
= \(\left(-2\right).\left(-\dfrac{3}{2}\right).\left(-\dfrac{4}{3}\right).\left(-\dfrac{5}{4}\right)...\left(-\dfrac{215}{214}\right)\)
= \(\dfrac{\left(-2\right).\left(-3\right).\left(-4\right).\left(-5\right)...\left(-215\right)}{1.2.3.4...214}\)
= \(\dfrac{2.3.4.5...215}{1.2.3.4...214}\)
= \(\dfrac{215}{1}=215\)
B = \(\left(-1\dfrac{1}{2}\right).\left(-1\dfrac{1}{3}\right).\left(-1\dfrac{1}{4}\right)....\left(-1\dfrac{1}{299}\right)\)
= \(\left(-\dfrac{3}{2}\right).\left(-\dfrac{4}{3}\right).\left(-\dfrac{5}{4}\right)...\left(-\dfrac{300}{299}\right)\)
= \(\dfrac{\left(-3\right).\left(-4\right).\left(-5\right)...\left(-300\right)}{2.3.4...299}\)
= \(\dfrac{3.4.5...300}{2.3.4.5...299}\)
= \(\dfrac{300}{2}=150\)
![](https://rs.olm.vn/images/avt/0.png?1311)
1: \(=\dfrac{-8}{11}\left(\dfrac{3}{2}+\dfrac{33}{20}+\dfrac{11}{10}\right)\)
\(=\dfrac{-8}{11}\cdot\dfrac{30+33+22}{20}=\dfrac{-8}{11}\cdot\dfrac{85}{20}=-\dfrac{34}{11}\)
2: \(=\dfrac{2}{3}+\dfrac{1}{3}=1\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a: =>4x-6-9=5-3x-3
=>4x-15=-3x+2
=>7x=17
hay x=17/7
b: \(\Leftrightarrow\dfrac{2}{3x}-\dfrac{1}{4}=\dfrac{4}{5}-\dfrac{7}{x}+2\)
=>2/3x+21/3x=4/5+2+1/4=61/20
=>23/3x=61/20
=>3x=23:61/20=460/61
hay x=460/183
![](https://rs.olm.vn/images/avt/0.png?1311)
1, \(B=\left(1-\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)...........\left(1-\dfrac{1}{n+1}\right)\)
\(=\left(\dfrac{2}{2}-\dfrac{1}{2}\right)\left(\dfrac{3}{3}-\dfrac{1}{3}\right)...........\left(\dfrac{n+1}{n+1}-\dfrac{1}{n+1}\right)\)
\(=\dfrac{1}{2}.\dfrac{2}{3}..............\dfrac{n}{n+1}\)
\(=\dfrac{1.2.3........n}{2.3.......\left(n+1\right)}\)
\(=\dfrac{1}{n+1}\)
2, \(A=\dfrac{1}{1.2}+\dfrac{1}{2.3}+...........+\dfrac{1}{99.100}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+............+\dfrac{1}{99}-\dfrac{1}{100}\)
\(=1-\dfrac{1}{100}\)
\(=\dfrac{99}{100}\)
C=\(-66\left(\dfrac{1}{2}-\dfrac{1}{3}-\dfrac{1}{11}\right)+124.\left(-37\right)+63.\left(-124\right)\)
=\(-66.\left(\dfrac{5}{66}\right)+124\left(-37-63\right)=-5+124.\left(-100\right)\)
=-12405
![](https://rs.olm.vn/images/avt/0.png?1311)
\(b,C=\dfrac{1}{18}+\dfrac{1}{54}+\dfrac{1}{108}+...+\dfrac{1}{990}\\ =\dfrac{1}{3.6}+\dfrac{1}{6.9}+\dfrac{1}{9.12}+...+\dfrac{1}{30.33}\\ =\dfrac{1}{3}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{12}+...+\dfrac{1}{30}-\dfrac{1}{33}\\ =\dfrac{1}{3}-\dfrac{1}{33}\\ =\dfrac{11}{33}-\dfrac{1}{33}=\dfrac{10}{33}\)
a.F=\(\dfrac{4}{2.4}\)+\(\dfrac{4}{4.6}\)+\(\dfrac{4}{6.8}\)+...+\(\dfrac{4}{2008.2010}\)
F=\(\dfrac{2.2}{2.4}\)+\(\dfrac{2.2}{4.6}\)+\(\dfrac{2.2}{6.8}\)+...+\(\dfrac{2.2}{2008.2010}\)
F=2.(\(\dfrac{2}{2.4}\)+\(\dfrac{2}{4.6}\)+\(\dfrac{2}{6.8}\)+...+\(\dfrac{2}{2008.2010}\))
F=2.(\(\dfrac{1}{2}\)-\(\dfrac{1}{4}\)+\(\dfrac{1}{4}\)-\(\dfrac{1}{6}\)+\(\dfrac{1}{6}\)-\(\dfrac{1}{8}\)+...+\(\dfrac{1}{2008}\)-\(\dfrac{1}{2010}\))
F=2.(\(\dfrac{1}{2}\)-\(\dfrac{1}{2010}\))
F=\(\dfrac{1004}{1005}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a,\(\frac{-2}{5}+\frac{7}{21}=\frac{-2}{5}+\frac{1}{3}=\frac{-6}{15}+\frac{5}{15}=\frac{-1}{15}\)
b,\(\left(\frac{1}{3}\right)^5.3^5-2020^0=\left(\frac{1}{3}.3\right)^5-1=1^5-1=1-1=0\)
c,\(\left(-\frac{1}{4}\right).6\frac{2}{11}+3\frac{9}{11}.\left(-\frac{1}{4}\right)\)
\(=\left(-\frac{1}{4}\right).\left(6\frac{2}{11}+3\frac{9}{11}\right)=\left(-\frac{1}{4}\right).\left[\left(6+3\right)+\left(\frac{2}{11}+\frac{9}{11}\right)\right]\)
\(=\left(-\frac{1}{4}\right).\left[9+1\right]=\frac{-1}{4}.10=\frac{\left(-1\right).10}{4}=\frac{\left(-1\right).5}{2}=\frac{-5}{2}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
(x-2020)x - 1 - (x - 2020)x + 2019 = 0
=> (x - 2020)x - 1 .[(x - 2020)2020 - 1] = 0
=> \(\orbr{\begin{cases}\left(x-2020\right)^{x-1}=0\\\left(x-2020\right)^{2020}-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x-2020=0\\\left(x-2020\right)^{2020}=1^{2020}\end{cases}\Rightarrow}\orbr{\begin{cases}x-2020=0\\x-2020=\pm1\end{cases}}}\)
=> \(x-2020\in\left\{0;1;-1\right\}\Rightarrow x\in\left\{2020;2021;2019\right\}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
bài 1:
\(\frac{7}{4}\left(\frac{33}{42}+\frac{3333}{2020}+\frac{333333}{303030}+\frac{33333333}{42424242}\right)\)
\(=\frac{7}{4}\left(\frac{33}{12}+\frac{33}{20}+\frac{33}{30}+\frac{33}{42}\right)\)
\(=\frac{7}{4}.33\left(\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}\right)\)
\(=\frac{231}{4}\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\right)\)
\(=\frac{231}{4}\left(\frac{1}{3}-\frac{1}{7}\right)\)
\(=\frac{231}{4}\cdot\frac{4}{21}=11\)
\(\left[\left(\frac{2}{193}-\frac{3}{386}\right).\frac{193}{17}+\frac{33}{34}\right]:\left[\left(\frac{7}{1931}+\frac{11}{3862}\right).\frac{1931}{25}+\frac{9}{2}\right]\)
= \(\left[\frac{193}{17}.\frac{2}{193}-\frac{193}{17}.\frac{3}{386}+\frac{33}{34}\right]:\left[\frac{1931}{25}.\frac{7}{1931}+\frac{1931}{25}.\frac{11}{3862}+\frac{9}{2}\right]\)
= \(\left[\frac{2}{17}-\frac{3}{17}+\frac{33}{34}\right]:\left[\frac{7}{25}+\frac{11}{50}+\frac{9}{2}\right]\)
= \(\left[\frac{4}{34}-\frac{6}{34}+\frac{33}{34}\right]:\left[\frac{14}{50}+\frac{11}{50}+\frac{225}{50}\right]\)
= \(\frac{31}{34}:2\)
= \(\frac{31}{68}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(B=\dfrac{7}{4}\left(\dfrac{33}{12}+\dfrac{33}{20}+\dfrac{33}{30}+\dfrac{33}{42}\right)\)
\(=\dfrac{7}{4}\left(\dfrac{11}{4}+\dfrac{33}{20}+\dfrac{11}{10}+\dfrac{11}{14}\right)\)
\(=\dfrac{7}{4}\cdot\dfrac{11\cdot35+33\cdot7+11\cdot14+11\cdot10}{140}\)
\(=\dfrac{880}{20\cdot4}=11\)
\(C=\dfrac{\left(\dfrac{53}{4}-\dfrac{59}{27}-\dfrac{65}{6}\right)\cdot\dfrac{5751}{25}+\dfrac{187}{4}}{\dfrac{100}{21}:\dfrac{-41}{21}}\)
\(=\dfrac{\dfrac{25}{108}\cdot\dfrac{5751}{25}+\dfrac{187}{4}}{\dfrac{-100}{41}}\)
\(=\dfrac{\dfrac{5751+187\cdot27}{108}}{\dfrac{-100}{41}}=100\cdot\dfrac{-41}{100}=-41\)
\(=1^{2020}=1\)
\(\left(\dfrac{1}{7}\right)^{2020}.7^{2020}\)
\(=\left(\dfrac{1}{7}.7\right)^{2020}\)
\(=\left(\dfrac{7}{7}\right)^{2020}\)
\(=1^{2020}\)
\(=1\)