K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 11 2019

Đáp án C

Số số tự nhiên gồm 4 chữ số đôi một khác nhau là szmrzXSwB0qf.png. Không gian mẫu ddc8GnQjDFgN.png có số phần tử là eYzc13po0Ezt.png.

Gọi A là biến cố “Số được chọn chia hết cho 25”. Gọi số đó có dạng Chọn thì  bWVtVXTYmEqV.png.

* Số đó có dạng 2M1xvmdr5ZuC.png: Chọn a có 7 cách, chọn b có 7 cách. Suy ra efw3Lluu5Ysi.png số 3eqpLr4bF5t2.png thỏa mãn.

* Số đó có dạng 50GxF292Xymz.png: Chọn a có 8 cách, chọn b có 7 cách. Suy ra bn6GKllu8mTx.png số XiwT9hIpaxnB.png thỏa mãn.

* Số đó có dạng hnlgZtKgWTD9.png: Chọn a có 7 cách, chọn b có 7 cách. Suy ra vIpRdJ4dN4Ce.png số ks3bq38ecy5N.png thỏa mãn.

Vậy số phần tử của biến cố A là

kJ4xHpMVWMr3.png.

Vậy xác suất cần tính là

4J6uROOibHaC.png.

18 tháng 9 2019

2 : cho ab=cd(a,b,c,d0)ab=cd(a,b,c,d≠0) và đôi 1 khác nhau, khác đôi nhau

Chứng minh :

a) C1: Đặt \(\frac{a}{b}=\frac{c}{d}=k\)\(\Rightarrow\left\{{}\begin{matrix}a=kb\\c=kd\end{matrix}\right.\)

\(\frac{a-b}{a+b}=\frac{kb-b}{kb+b}=\frac{b\left(k-1\right)}{b\left(k+1\right)}=\frac{k-1}{k+1}\)

\(\frac{c-d}{c+d}=\frac{kd-d}{kd+d}=\frac{d\left(k-1\right)}{d\left(k+1\right)}\frac{k-1}{k+1}\)

Bài 1: 

a: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{2}=\dfrac{y}{\dfrac{3}{2}}=\dfrac{z}{\dfrac{4}{3}}=\dfrac{x-y}{2-\dfrac{3}{2}}=\dfrac{15}{\dfrac{1}{2}}=30\)

Do đó: x=60; y=45; z=40

b: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{21}=\dfrac{x+y+z}{10+15+21}=\dfrac{92}{46}=2\)

Do đó: x=20; y=30; z=42

6 tháng 9 2017

ADCT: \(\sqrt{u}'=\dfrac{u'}{2\sqrt{u}}\); \(\left(\dfrac{u}{v}\right)'=\dfrac{u'.v-u.v'}{v^2}\)

y'=\(\dfrac{\left(\dfrac{x^3}{x-1}\right)'}{2\sqrt{\dfrac{x^3}{x-1}}}\)

\(\left(\dfrac{x^3}{x-1}\right)'=\dfrac{\left(x^3\right)'.\left(x-1\right)-\left(x-1\right)'.x^3}{\left(x-1\right)^2}\)

=\(\dfrac{3x^2.\left(x-1\right)-x^3}{\left(x-1\right)^2}\)=\(\dfrac{2x^3-3x^2}{\left(x-1\right)^2}\)

=>y'\(\dfrac{2x^3-3x^2}{\left(x-1\right)^2.\sqrt{\dfrac{x^3}{x-1}}}\)=\(\dfrac{2x^3-3x^2}{\sqrt{\left(\dfrac{x}{x-1}\right)^3}}\)

7 tháng 9 2017

cái mẫu sai r

11 tháng 5 2017

a) Cần biết ít nhật ba trong năm đại lượng u1, n, d, un, Sn thì có thể tính được hai đại lượng còn lại.

b) Thực chất đây là năm bài tập nhỏ, mỗi bài ứng với các dữ liệu ở một dòng. Học sinh phải giải từng bài nhỏ rồi mới điền kết quả.

b1) Biết u1 = -2, un = 55, n = 20. Tìm d, Sn

Áp dụng công thức d = , Sn =

Đáp số: d = 3, S20 = 530.

b2) Biết d = -4, n = 15, Sn = 120. Tìm u1, un

Áp dụng công thức un = u1 + (n - 1)d và Sn = ,

ta có:

Giải hệ trên, ta được u1 = 36, u15 = - 20.

Tuy nhiên, nếu sử dụng công thức

thì S15 = 120 = 15u1 + .

Từ đó ta có u1 = 36 và tìm được u15 = - 20.

b3) Áp dụng công thức un = u1 + (n - 1)d, từ đây ta tìm được n; tiếp theo áp dụng công thức . Đáp số: n = 28, Sn = 140.

b4) Áp dụng công thức , từ đây tìm được n, tiếp theo áp dụng công thức un = u1 + (n - 1)d. Đáp số: u1 = -5, d= 2.

b5) Áp dụng công thức , từ đây tìm được n, tiếp theo áp dụng công thức un = u1 + (n - 1)d. Đáp số: n = 10, un = -43

9 tháng 4 2017

Xét dãy số (an), ta có a1 = 4.

Giả sử hình vuông cạnh Cn có độ dài cạnh là an. Ta sẽ tính cạnh an+1 của hình vuông Cn+1. Theo hình 9, áp dụng định lí Pi-ta-go, ta có:

an+1 = với n ε N*.

Vậy dãy số (an) là cấp số nhân với số hạng đầu là a1 = 4 và công bội q =