Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Nối BM
Ta có AM= AB.cosMAB
=> || = |
|.cos(
,
)
Ta có: .
= |
|.|
| ( vì hai vectơ
,
cùng phương)
=> .
= |
|.|
|.cosAMB.
nhưng ||.|
|.cos(
,
) =
.
Vậy .
=
.
Với .
=
.
lý luận tương tự.
b) .
=
.
.
=
.
=> .
+
.
=
(
+
)
=> .
+
.
=
= 4R2

a) cos(;
) =
= 0
=> (;
) = 900
b) cos(;
) =
=
=> (;
) = 450
c) cos(;
) =
=
=> (;
) = 1500

Ta có cos(,
) = cos1350 =
sin(,
) = sin900 = 1
cos(,
) = cos00 = 1

Trước hết ta có
= 3
=>
= 3 (
+
)
=> = 3
+ 3
=> – = 3
=> =
mà =
–
nên
=
(
–
)
Theo quy tắc 3 điểm, ta có
=
+
=>
=
+
–
=> = –
+
hay
= –
+

Áp dụng quy tắc 3 điểm đối với phép cộng vectơ:
=
+
=
+
=> +
=
+
+ (
+
)
ABCD là hình bình hành, hi vec tơ và
là hai vec tơ đối nhau nên:
+
=
Suy ra +
=
+
.
Mình có cách khác :
Áp dụng quy tắc 3 điểm đối với phép trừ vec tơ
=
–
=
–
=> +
= (
+
) – (
+
).
ABCD là hình bình hành nên và
là hai vec tơ đối nhau, cho ta:
+
=
Suy ra: +
=
+
.

Gọi G là giao điểm của AK, BM thì G là trọng tâm của tam giác.
Ta có =
=>
=
= –
= –
= –
Theo quy tắc 3 điểm đối với tổng vec tơ:
=
+
=>
=
–
=
(
–
).
AK là trung tuyến thuộc cạnh BC nên
+
= 2
=>
–
+
= 2
Từ đây ta có =
+
=>
= –
–
.
BM là trung tuyến thuộc đỉnh B nên
+
= 2
=> –
+
= 2
=> =
+
.

Gọi D là trung điểm của cạnh AB, ta có:
+
= 2
Đẳng thức đã cho trở thành:
2+ 2
=
=> +
=
Đẳng thức này chứng tỏ M là trung điểm của CD

a) Ta có, theo quy tắc ba điểm của phép trừ:
=
–
(1)
Mặt khác, =
(2)
Từ (1) và (2) suy ra:
=
–
.
b) Ta có : =
–
(1)
=
(2)
Từ (1) và (2) cho ta:
=
–
.
c) Ta có :
–
=
(1)
–
=
(2)
=
(3)
Từ (1), (2), (3) suy ra đpcm.
d) –
+
= (
–
) +
=
+
=
+
( vì
=
) =

a) Gọi theo thứ tự ∆1, ∆2, ∆3 là giá của các vectơ ,
,
cùng phương với
=> ∆1 //∆3 ( hoặc ∆1 = ∆3 ) (1)
cùng phương với
=> ∆2 // ∆3 ( hoặc ∆2 = ∆3 ) (2)
Từ (1), (2) suy ra ∆1 // ∆2 ( hoặc ∆1 = ∆2 ), theo định nghĩa hai vectơ ,
cùng phương.
Vậy
a) đúng.
b) Đúng.
vì
= (5; 1) nên ta chọn vectơ
⊥
là vec tơ
= (1; -5)
Từ đây ta có phương trình tham số của d: