
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a: \(=\dfrac{6x^2+15x-2x-5}{2x+5}=3x-1\)
b: \(=\dfrac{x^2\left(x+3\right)+\left(x-3\right)}{x-3}=x^2+1\)
c: \(=\dfrac{2x^4-6x^2+x^3-3x+x^2-3}{x^2-3}=2x^2+x+1\)

x -1 2x -5x +x +3x-1 2 5 3 2 2x 3 2x -2x 5 3 -3x +x +3x-1 3 2 -3x -2 -3x +3x 3 2 -2x +3x-1 2 2 -2x +2 3x -3

1: \(\frac{x^2-2x}{x+2}=\frac{x^2+2x-4x-8+8}{x+2}\)
\(=\frac{x\left(x+2\right)-4\left(x+2\right)+8}{x+2}\)
\(=x-4+\frac{8}{x+2}\)
=>Số dư là 8
2: \(\frac{x^2+3x}{x-3}=\frac{x^2-3x+6x-18+18}{x-3}\)
\(=\frac{x\left(x-3\right)+6\left(x-3\right)+18}{x-3}\)
\(=x+6+\frac{18}{x-3}\)
=>Số dư là 18
3: \(\frac{x^3-x}{x^2+1}=\frac{x^3+x-2x}{x^2+1}=\frac{x\left(x^2+1\right)-2x}{x^2+1}=x-\frac{2x}{x^2+1}\)
=>Số dư là 2x
4: \(\frac{-x^2+4x}{x+4}\)
\(=\frac{-x^2-4x+8x+32-32}{x+4}\)
\(=\frac{-x\left(x+4\right)+8\left(x+4\right)-32}{x+4}=-x+8-\frac{32}{x+4}\)
=>Số dư là -32
5: \(\frac{x^2-2x+1}{x+1}=\frac{x^2+x-3x-3+4}{x+1}\)
\(=\frac{x\left(x+1\right)-3\left(x+1\right)+4}{x+1}\)
\(=x-3+\frac{4}{x+1}\)
=>Số dư là 4
6: \(\frac{x^2-2x+3}{x-1}=\frac{x^2-x-x+1+2}{x-1}=\frac{x\left(x-1\right)-\left(x-1\right)+2}{x-1}\)
\(=\left(x-1\right)+\frac{2}{x-1}\)
=>Số dư là 2
7: \(\frac{x^2-4x+3}{x+3}=\frac{x^2+3x-7x-21+24}{x+3}\)
\(=\frac{x\left(x+3\right)-7\left(x+3\right)+24}{x+3}=x-7+\frac{24}{x+3}\)
=>Số dư là 24
8: \(\frac{x^2+5x+6}{x-5}=\frac{x^2-5x+10x-50+56}{x-5}=x+10+\frac{56}{x-5}\)
=>Số dư là 56

Bài giải:
[3(x – y)4 + 2(x – y)3 – 5(x – y)2] : (y – x)2
= [3(x – y)4 + 2(x – y)3 – 5(x – y)2] : [-(x – y)]2
= [3(x – y)4 + 2(x – y)3 – 5(x – y)2] : (x – y)2
= 3(x – y)4 : (x – y)2 + 2(x – y)3 : (x – y)2 + [– 5(x – y)2 : (x – y)2]
= 3(x – y)2 + 2(x – y) – 5
Bài 65: (SGK/29):
Cách 1:
[ 3(x-y)4 + 2(x-y)3 - 5(x-y)2] : (y-x)2
= [ 3(x-y)4 + 2(x-y)3 - 5(x-y)2] : (x-y)2
= 3.(x-y)4 : (x-y)2 + 2.(x-y)3 : (x-y)2 - 5.(x-y)2 : (x-y)2
= 3.(x-y)2 + 2.(x-y) - 5
Cách theo SGK:
[ 3(x-y)4 + 2(x-y)3 - 5(x-y)2] : (y-x)2
Đặt (x-y) = z => (y-x) = z
=> (x-y)2 = z2 = (y-x)2 = (-z2) = z2
Ta có: ( 3.z4 + 2.z3 - 5.z2) : z2
= (3z4 : z2) + (2z3 : z2) - (5z2 : z2)
= 3z2 + 2z - 5
Cách 2:
[ 3(x-y)4 + 2(x-y)3 - 5(x-y)2] : (y-x)2
= (x-y)2 [ 3(x-y)2 + 2(x-y) - 5] : (x-y)2
= 3(x-y)2 + 2(x-y) - 5

a) \(\left( {6{x^3} - 7{x^2} - x + 2} \right):\left( {2x + 1} \right)\)
b) $(x^4-x^3+x^2+3x):(x^2-2x+3)$
c) \(\left( {{x^2} + {y^2} + 6x + 9} \right):\left( {x + y + 3} \right)\)
\(=\left( {{x^2} + 6x + 9 - {y^2}} \right)\left( {x + y + 3} \right)\)
\(=\left[ {\left( {{x^2} + 2x.3 + {3^2}} \right) - {y^2}} \right]:\left( {x + y + 3} \right)\)
\(=\left[ {{{\left( {x + 3} \right)}^2} - {y^2}} \right]:\left( {x + y + 3} \right)\)
\(=\left( {x + 3 - y} \right)\left( {x + 3 + y} \right):\left( {x + y + 3} \right)\)
$= x + 3 - y$
$= x - y + 3$
(6x3 - 7x2 - x + 2) : (2x + 1)
= (6x3 + 3x2 - 10x2 - 5x + 4x + 2) : (2x + 1)
= [(6x3 + 3x2) - (10x2 + 5x) + (4x + 2)] : (2x + 1)
= [3x2(2x + 1) - 5x(2x + 1) + 2(2x + 1)] : (2x + 1)
= (3x2 - 5x + 2)(2x + 1) : (2x + 1)
= 3x2 - 5x + 2
(x4 - x3 + x2 + 3x) : (x2 - 2x + 3)
= (x4 + x3 - 2x3 - 2x2 + 3x2 + 3x) : (x2 - 2x + 3)
= [(x4 + x3) - (2x3 + 2x2) + (3x2 + 3x)] : (x2 - 2x + 3)
= [x3(x + 1) - 2x2(x + 1) + 3x(x + 1)] : (x2 - 2x + 3)
= (x3 - 2x2 + 3x)(x + 1) : (x2 - 2x + 3)
= x(x2 - 2x + 3)(x + 1): (x2 - 2x + 3)
= x(x + 1)
= x2 + x
(x2 - y2 + 6x + 9) : (x + y + 3)
= [(x2 + 6x + 9) - y2] : (x + y + 3)
= [(x + 3)2 - y2] : (x + y + 3)
= (x + 3 + y)(x + 3 - y) : (x + y + 3)
= (x + y + 3)(x - y + 3) : (x + y + 3)
= x - y + 3
CHÚC BN HOK TỐT