Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

biết giải bài 2
x/12=y/14=x.y/12.24=98/288=49/144
=> x/12=49/144=> 49/12
=> y/14=49/144=> 343/72
mới lớp 2 thôi

Bài 1:
Nếu a,b,c # 0 thì theo tính chất của dãy tỉ số bằng nhau , ta có:
\(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)
Nếu a + b + c = 0 thì b + c = -a ; c + a = - b ; a + b = -c
<=> Tỉ số của \(\frac{a}{b+c};\frac{c}{c+a};\frac{c}{a+b}\) Bằng -1

a)\(\left|5x-4\right|=\left|x+2\right|\Leftrightarrow\) \(\begin{cases}5x-4=x+2\\5x-4=-x-2\end{cases}\) \(\Leftrightarrow\begin{cases}5x-x=4+2\\5x+x=4-2\end{cases}\Leftrightarrow\)\(\begin{cases}4x=6\\6x=2\end{cases}\) \(\Leftrightarrow\begin{cases}x=\frac{3}{2}\\x=\frac{1}{3}\end{cases}\)
b)\(\left|7x+1\right|-\left|5x+6\right|=0\Leftrightarrow\left|7x+1\right|=\left|5x+6\right|\Leftrightarrow\begin{cases}7x+1=5x+6\\7x+1=-5x-6\end{cases}\Leftrightarrow\begin{cases}7x-5x=-1+6\\7x+5x=-1-6\end{cases}\Leftrightarrow\begin{cases}2x=5\\12x=-7\end{cases}\Leftrightarrow\begin{cases}x=\frac{5}{2}\\x=-\frac{7}{12}\end{cases}\)
c) Tương tự
Cứ áp dụng \(\left|A\left(x\right)\right|=\left|B\left(x\right)\right|\)\(\Leftrightarrow\)\(A\left(x\right)=B\left(x\right)\) hoặc \(A\left(x\right)=-B\left(x\right)\) là đc mà
VD câu a) nè \(\left|5x-4\right|=\left|x+2\right|\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}5x-4=x+2\\5x-4=-x-2\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{3}{2}\\x=\frac{1}{3}\end{cases}}}\)
Tương tự ....
Chúc bạn học tốt ~

3. Tìm x biết: |15-|4.x||=2019
\(\Rightarrow\orbr{\begin{cases}15-\left|4x\right|=2019\\15-\left|4x\right|=-2019\end{cases}\Rightarrow\orbr{\begin{cases}\left|4x\right|=-2004\\\left|4x\right|=2034\end{cases}}}\)
vì \(4x\ge0\)\(\Rightarrow\)|4x|=2043\(\Rightarrow4x=2034\Rightarrow x=508,5\)
KL: x=508,5

a, \(\left(x-\frac{1}{2}\right)^3=\frac{1}{27}\)\(\Rightarrow\left(x-\frac{1}{2}\right)^3=\left(\frac{1}{3}\right)^3\)\(\Rightarrow x-\frac{1}{2}=\frac{1}{3}\)\(\Rightarrow x=\frac{5}{6}\)
b, \(\left(x-1\right)^{x+2}=\left(x-1\right)^{x+6}\)
\(\Rightarrow\left(x-1\right)^{x+2}-\left(x-1\right)^{x+6}=0\)
\(\Rightarrow\left(x-1\right)^{x+2}\left[1-\left(x-1\right)^4\right]=0\)
\(\Rightarrow\orbr{\begin{cases}\left(x-1\right)^{x+2}=0\\1-\left(x-1\right)^4=0\end{cases}}\Rightarrow\orbr{\begin{cases}x-1=0\\\left(x-1\right)^4=1\end{cases}}\Rightarrow\orbr{\begin{cases}x=1\\\left(x-1\right)^4=1\end{cases}}\)
Giải: \(\left(x-1\right)^4=1\)\(\Rightarrow\orbr{\begin{cases}x-1=1\\x-1=-1\end{cases}}\Rightarrow\orbr{\begin{cases}x=2\\x=0\end{cases}}\)
c, Vì \(\left(x+20\right)^{100}\ge0\)\(\forall x\inℝ\); \(\left|y+4\right|\ge0\)\(\forall y\inℝ\)
\(\Rightarrow\left(x+20\right)^{100}+\left|y+4\right|\ge0\)\(\forall x,y\inℝ\)
Dấu " = " xảy ra <=> \(\hept{\begin{cases}x+20=0\\y+4=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-20\\y=-4\end{cases}}\)
d, \(2^{x-1}=16\)\(\Rightarrow2^{x-1}=2^4\)=> x - 1 = 4 => x = 5

1) So sánh
Ta có : 224 = 23.8 = (23)8 = 88
316 = 32.8 = (32)8 = 98
Vì 88 < 98
=> 224 < 316
2) Tính
\(\left(0,25\right)^4.1024=\left(\frac{1}{4}\right)^4.1024=\frac{1}{4^4}.2^{10}=\frac{1}{\left(2^2\right)^4}.2^{10}=\frac{1}{2^8}.2^{10}=\frac{2^{10}}{2^8}=2^2=4\)
3) Tìm x nguyên
(x - 1)x + 2 = (x - 1)x + 6
=> (x - 1)x + 6 - (x - 1)x + 2 = 0
=> (x - 1)x + 2.[(x - 1)4 - 1] = 0
=> \(\orbr{\begin{cases}\left(x-1\right)^{x+2}=0\\\left(x-1\right)^4-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x-1=0\\\left(x-1\right)^4=1^4\end{cases}\Rightarrow}\orbr{\begin{cases}x-1=0\\x-1=\pm1\end{cases}}}\)
Nếu x - 1 = 0 => x = 1(tm)
Nếu x - 1 = - 1 => x = 0(tm)
Nếu x - 1 = 1 => x = 2(tm)
Vậy \(x\in\left\{1;0;2\right\}\)
Bài 1:Ta có:
2^24=2^(6.4)=64^4
3^16=3^(4.4)=81^4
Bài 2.Ta có:
(0.25)^4=1/4.1/4.1/4.1/4=1/256
=>1/256.1024=4
Bài 3:
Ta có:(x-1)^(x+2)=(x-1)^(x+6)
Chia hai vế cho (x-1)^(x+2),do đó:
1=(x-1)^(x+4)
<=>x-1=1
<=>x=2
Hoặc chia hai vế cho (x-1)^(x+6)
(x-1)^(x-4)=1
<=>x-1=1
<=>x=2

2.
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x-3}{4}=\frac{y+5}{3}=\frac{z-4}{5}=\frac{2x-3-3y-5+4z-4}{2.4-3.3+4.5}=\frac{2x-3y+4z-12}{19}=\frac{75-12}{19}=\frac{63}{19}\)
=> x,y,z=
1) Ta có : \(\sqrt{50}+\sqrt{26}+1>\sqrt{49}+\sqrt{25}+1=7+5+1=13=\sqrt{169}>\sqrt{168}\)
=> \(\sqrt{50}+\sqrt{26}+1>\sqrt{168}\)
6) Ta có : \(\hept{\begin{cases}\frac{a}{a+b}>\frac{a}{a+b+c}\\\frac{b}{b+c}>\frac{b}{a+b+c}\\\frac{c}{c+a}>\frac{c}{a+b+c}\end{cases}}\)
Khi đó M > \(\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=\frac{a+b+c}{a+b+c}=1\)
=> M > 1
Lại có : \(\hept{\begin{cases}\frac{a}{a+b}< \frac{a+c}{a+b+c}\\\frac{b}{b+c}< \frac{b+a}{a+b+c}\\\frac{c}{c+a}< \frac{c+b}{a+b+c}\end{cases}}\)
Khi đó M < \(\frac{a+c}{a+b+c}+\frac{b+a}{a+b+c}+\frac{c+b}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)
=> M < 2 (2)
Kết hợp (1) và (2) => 1 < M < 2
=> \(M\notinℤ\)(ĐPCM)
Câu này hay nhỉ
Nhưng mak khó quá mk ko nghĩ ra.
Xin lỗi bn nhé!