
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Đặt \(a=\dfrac{1}{x};b=\dfrac{1}{y};c=\dfrac{1}{z}\Rightarrow xyz=1\) và \(x;y;z>0\)
Gọi biểu thức cần tìm GTNN là P, ta có:
\(P=\dfrac{1}{\dfrac{1}{x^3}\left(\dfrac{1}{y}+\dfrac{1}{z}\right)}+\dfrac{1}{\dfrac{1}{y^3}\left(\dfrac{1}{z}+\dfrac{1}{x}\right)}+\dfrac{1}{\dfrac{1}{z^3}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)}\)
\(=\dfrac{x^3yz}{y+z}+\dfrac{y^3zx}{z+x}+\dfrac{z^3xy}{x+y}=\dfrac{x^2}{y+z}+\dfrac{y^2}{z+x}+\dfrac{z^2}{x+y}\)
\(P\ge\dfrac{\left(x+y+z\right)^2}{y+z+z+x+x+y}=\dfrac{x+y+z}{2}\ge\dfrac{3\sqrt[3]{xyz}}{2}=\dfrac{3}{2}\)
\(P_{min}=\dfrac{3}{2}\) khi \(x=y=z=1\) hay \(a=b=c=1\)
Đặt \(a = \frac{1}{x} ; b = \frac{1}{y} ; c = \frac{1}{z} \Rightarrow x y z = 1\) và \(x ; y ; z > 0\)
Gọi biểu thức cần tìm GTNN là P, ta có:
\(P = \frac{1}{\frac{1}{x^{3}} \left(\right. \frac{1}{y} + \frac{1}{z} \left.\right)} + \frac{1}{\frac{1}{y^{3}} \left(\right. \frac{1}{z} + \frac{1}{x} \left.\right)} + \frac{1}{\frac{1}{z^{3}} \left(\right. \frac{1}{x} + \frac{1}{y} \left.\right)}\)
\(= \frac{x^{3} y z}{y + z} + \frac{y^{3} z x}{z + x} + \frac{z^{3} x y}{x + y} = \frac{x^{2}}{y + z} + \frac{y^{2}}{z + x} + \frac{z^{2}}{x + y}\)
\(P \geq \frac{\left(\left(\right. x + y + z \left.\right)\right)^{2}}{y + z + z + x + x + y} = \frac{x + y + z}{2} \geq \frac{3 \sqrt[3]{x y z}}{2} = \frac{3}{2}\)
\(P_{m i n} = \frac{3}{2}\) khi \(x = y = z = 1\) hay \(a = b = c = 1\)

Xét tứ giác APMQ có \(\hat{APM}=\hat{AQM}=\hat{PAQ}=90^0\)
nên APMQ là hình chữ nhật

Bài 9:
Nửa chu vi mảnh đất là 34:2=17(m)
Gọi chiều rộng mảnh đất là x(m)
(ĐIều kiện: 0<x<17/2)
Chiều dài mảnh đất là 17-x(m)
Chiều rộng mảnh đất sau khi thêm 2m là x+2(m)
Chiều dài mảnh đất sau khi thêm 3m là 17-x+3=20-x(m)
Diện tích tăng thêm \(45m^2\) nên ta có:
\(\left(x+2\right)\left(20-x\right)-x\left(17-x\right)=45\)
=>\(20x-x^2+40-2x-17x+x^2=45\)
=>x+40=45
=>x=5(nhận)
vậy: Chiều rộng là 5m
Chiều dài là 17-5=12m
Bài 8:
Gọi thời gian ô tô đi trên đoạn đường AB là x(giờ)
(Điều kiện: x>0)
Thời gian ô tô đi trên đoạn đường BC là x+0,5(giờ)
Độ dài quãng đường AB là 50x(km)
Độ dài quãng đường BC là 45(x+0,5)(km)
Tổng độ dài hai quãng đường là 165km nên ta có:
50x+45(x+0,5)=165
=>50x+45x+22,5=165
=>95x=142,5
=>x=1,5(nhận)
vậy: thời gian ô tô đi trên đoạn đường AB là 1,5(giờ)
thời gian ô tô đi trên đoạn đường BC là 1,5+0,5=2(giờ)

a: Xét ΔCAD vuông tại A và ΔCED vuông tại E có
CD chung
\(\hat{ACD}=\hat{ECD}\)
Do đó: ΔCAD=ΔCED
=>CA=CE
b: ΔCAD=ΔCED
=>DA=DE
Xét ΔDAF vuông tại A và ΔDEB vuông tại E có
DA=DE
AF=BE
Do đó: ΔDAF=ΔDEB
=>\(\hat{ADF}=\hat{EDB}\)
mà \(\hat{EDB}+\hat{ADE}=180^0\) (hai góc kề bù)
nên \(\hat{ADF}+\hat{ADE}=180^0\)
=>F,D,E thẳng hàng
c: AM là phân giác của góc BAC
=>\(\hat{BAM}=\hat{CAM}=\frac12\cdot\hat{BAC}=\frac{90^0}{2}=45^0\)
Xét tứ giác NMBA có \(\hat{NMB}+\hat{NAB}=90^0+90^0=180^0\)
nên NMBA là tứ giác nội tiếp
=>\(\hat{MNB}=\hat{MAB}=45^0\)
Xét ΔMNB vuông tại M có \(\hat{MNB}=45^0\)
nên ΔMNB vuông cân tại M
=>MN=MB

\({x^2} = {4^2} + {2^2} = 20 \Rightarrow x = 2\sqrt 5 \)
\({y^2} = {5^2} - {4^2} = 9 \Leftrightarrow y = 3\)
\({z^2} = {\left( {\sqrt 5 } \right)^2} + {\left( {2\sqrt 5 } \right)^2} = 25 \Rightarrow z = 5\)
\({t^2} = {1^2} + {2^2} = 5 \Rightarrow t = \sqrt 5 \)

a: ta có: EI⊥BF
AC⊥BF
Do đó: EI//AC
=>\(\hat{IEB}=\hat{ACB}\) (hai góc đồng vị)
mà \(\hat{ABC}=\hat{ACB}\) (ΔABC cân tại A)
nên \(\hat{KBE}=\hat{IEB}\)
Xét ΔKBE vuông tại K và ΔIEB vuông tại I có
BE chung
\(\hat{KBE}=\hat{IEB}\)
Do đó: ΔKBE=ΔIEB
=>EK=BI
b: Điểm D ở đâu vậy bạn?

a.
\(A=\left(\dfrac{\left(x-1\right)\left(x^2+x+1\right)}{x\left(x-1\right)}+\dfrac{\left(x-2\right)\left(x+2\right)}{x\left(x-2\right)}+\dfrac{x-2}{x}\right):\dfrac{x+1}{x}\)
\(=\left(\dfrac{x^2+x+1}{x}+\dfrac{x+2}{x}+\dfrac{x-2}{x}\right):\dfrac{x+1}{x}\)
\(=\left(\dfrac{x^2+3x+1}{x}\right).\dfrac{x}{x+1}\)
\(=\dfrac{x^2+3x+1}{x+1}\)
2.
\(x^3-4x^3+3x=0\Leftrightarrow x\left(x^2-4x+3\right)=0\)
\(\Leftrightarrow x\left(x-1\right)\left(x-3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\left(loại\right)\\x=1\left(loại\right)\\x=3\end{matrix}\right.\)
Với \(x=3\Rightarrow A=\dfrac{3^2+3.3+1}{3+1}=\dfrac{19}{4}\)

3:
a: Xét ΔABC có AD/AB=AE/AC
nên DE//BC
Xét tứ giác BDEC có
DE//BC
góc B=góc C
=>BDEC là hình thang cân
b: góc ABC=góc ACB=(180-góc A)/2
=(180-50)/2=65 độ
=>góc BDE=góc DEC=180-65=115 độ