Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có tam giác ABC cân tại A nên góc B=góc C mà góc ABC+ABD=180 độ
góc ACB+ACE=180 độ
=> góc ABD=góc ACE
Xét tam giác ABD và tam giác ACE có
AB=AC (tam giác ABC cân tại A)
góc ABD=góc ACE (cmt)
BD=CE(gt)
=> tam giác ABD=tam giác ACE(c-g-c)
=> AD=AE(cạnh tương ứng)
Vậy tam giác ADE cân và cân tại A
b/ Ta có tam giác ADE là tam giác cân và cân tại A nên góc D=góc E
Xét tam giác AMD và tam giác AME có:
AD=AE(tam giác ADE cân tại A)
góc D=góc E(cmt)
góc AMD=góc AME=90 độ
=> tam giác AMD=tam giác AME(ch-gn)
=> góc DAM=góc EAM(góc tương ứng)
Vậy AM là tia phân giác góc DAE
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài này cô mk dạy phải chứng minh thẳng hàng, không đc ra ngay nếu không sẽ mất điểm đó bạn.
![](https://rs.olm.vn/images/avt/0.png?1311)
a, xét t.giác BMC và t.giác DMA có:
BM=DM(gt)
\(\widehat{AMD}\)=\(\widehat{CMB}\)(vì đối đinh)
AM=MC(gt)
=>t.giác BMC=t.giác DMA(c.g.c)
=>\(\widehat{ADM}\)=\(\widehat{MBC}\)mà 2 góc này ở vị trí so le nên AD//BC
b,xét t.giác MAB và t.giác MCD có:
MA=MC(gt)
\(\widehat{AMB}\)=\(\widehat{CMD}\)(vì đối đỉnh)
MB=MD(gt)
=>t.giác MAB=t.giác MCD(c.g.c)
=>\(\widehat{MDC}\)=\(\widehat{MBA}\) mà 2 góc này ở vị trí so le nên AB//DC
xét t.giác DAB và t.giác DCB có:
\(\widehat{ADB}\)=\(\widehat{CBD}\)(vì so le)
DB cạnh chung
\(\widehat{ABD}\)=\(\widehat{CDB}\)(vì so le)
=>t.giác DAB=t.giác DCB(g.c.g)
=>DA=DC
=>t.giác ACD cân tại D
![](https://rs.olm.vn/images/avt/0.png?1311)
a) tta có góc HBD=góc ABC ( đối đỉnh )
góc KCE=góc ACB ( đối đỉnh )
mà góc ABC=góc ACB ( tam giác ABC cân )
suy ra góc HBD=gócKCE
xét tam giác HBD và KCE có :
HBD=KCE
BHD=CKE (=90 độ )
BD=CE
=) tam giác HBD=KCE
=)HB=CK
b) ta có góc AHB=ACK ( = 180* - góc ABC )
xét tam giác AHB và tam giác AKC có
góc AHB=gócAKC
HB=CK
AB=AC
suy ra tam giác AHB= tam giác AKC
=) góc AHK = góc AKC
c) ta có HD//KE ( cùng vuông vs BC )
mà HD=KE ( tg HBD=tgKCE )
suy ra HKED là hình bình hành
=) HK//DE
d) ta có góc HAD=góc KAE ( tg AHB=tgAKC )
=) góc HAD+BAC=góc KAE+BAC
=) góc HAE= góc KAD
do AB=AC ; BD=CE =) AB+BD=AC+CE
=) AD=AE
xét tg AHE và tg AKD có
góc HAE=góc KAD
AH=AK ( tg AHB=tg AKC )
AE=AD
suy ra tg AHE = tg AKD
e) do HKED là hình bình hành ; HK vuông vs HD
=) HKED là hình chữ nhật
mà I là gđ của 2 đường chéo HE và DK
suy ra ID=IE
xét tg AID và tg AIE có
AD=AE
ID=IE
chung AI
suy ra tg AID=tg AIE
=) góc DAI = góc EAI
=) AI là phân giác goc DAE
mà tg DAE cân tại A
suy ra AI là đường cao tg DAE
=) AI vuông vs DE
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 3:
Xét 2 \(\Delta\) \(AMO\) và \(BNO\) có:
\(\widehat{MAO}=\widehat{NBO}=90^0\left(gt\right)\)
\(OA=OB\) (vì O là trung điểm của \(AB\))
\(AM=BN\left(gt\right)\)
=> \(\Delta AMO=\Delta BNO\left(c-g-c\right)\)
=> \(\widehat{MOA}=\widehat{NOB}\) (2 góc tương ứng)
Mà \(\widehat{MOA}+\widehat{MOB}=180^0\) (vì 2 góc kề bù)
=> \(\widehat{NOB}+\widehat{MOB}=180^0.\)
=> \(M,O,N\) thẳng hàng. (1)
Ta có: \(\Delta AMO=\Delta BNO\left(cmt\right)\)
=> \(OM=ON\) (2 cạnh tương ứng) (2)
Từ (1) và (2) => \(O\) là trung điểm của \(MN\left(đpcm\right).\)
Bài 4:
Chúc bạn học tốt!
A B C D E H K I
bạn có biết làm ko?