Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) trong tam giác ADC có AC=CD(gt)
=> tam giác ADC cân ( dhnb)
Mà CM là trung tuyến(M là trung điểm)
=>CM vuông góc với AD
=> GÓC CMD=90 độ
Xét tam giác HAD và tam giác MCD có
góc AHD= góc CMD (=90 độ)
góc ADC: chung
=> tam giác HAD đồng dạng với tam giác MCD
b, tam giác HAD đồng dạng vs tam giác MCD
=>MD/HD=CD/AD
=>MD.AD=HD.CD
=>MD.1/2MD=HD.CD
=>MD^2/2=DH.CD

a) Xét 2 tam giác ADB và BCD có:
góc DAB = góc DBC (gt)
góc ABD = góc BDC ( so le trong )
nên tam giác ADB đồng dạng với tam giác BDC.(1)
b) Từ (1) ta được AB/BC = DB/CD = AB/BD
hay ta có; AD/BC = AB/BD <==> 3,5/BC = 2,5/5
==> BC= 3,5*5/2,5 = 7 (cm)
ta cũng có: DB/CD = AB/BD <==> 5/CD = 2,5/5
==> CD = 5*5/2,5 =10 (cm)
c) Từ (1) ta được;
AD/BC = DB/CD = AB/BD hay 3.5/7 = 5/10 = 2,5/5 = 1/2 .
ta nói tam giác ADB đồng giạc với tam giác BCD theo tỉ số đồng dạng là 1/2
mà tỉ số diện tích bằng bình phương tỉ số động dạng
do đó S ADB/ S BCD = (1/2)^2 = 1/4

B1): a): +)Ta có csc đường cao BD, CE cắt nhau tại I => BD vg góc vs AC; CE vg góc vs AB
+)Xét tg AEC và tg ADB, có: AEC=AHB=90( BD vg góc vs AC; CE vg góc vs AB )
BAC chung
Do đó: tg AEC ~ tg ADB ( gg)
=> AE/AD= AC/AB=> AE*AB=AD*AC (đpcm)
b) : Gợi ý hoi :)): Kẻ đcao AF xuống BC, sẽ đi qua điểm I; c/m ED//BC=> c/m đc tg AED~tg ABC theo trường hợp cgc, từ đó ta sẽ có đc 2 góc AED = ABC ( vì 2 tg trên ~ vs nhau )
A B C 5 5 6 M N
a, Vì BM là phân giác ^B nên : \(\frac{AB}{BC}=\frac{AM}{MC}\)( t/c )
\(\Rightarrow\frac{MC}{BC}=\frac{AM}{AB}\)( tỉ lệ thức )
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{MC}{BC}=\frac{AM}{AB}=\frac{MC+AM}{BC+AB}=\frac{5}{11}\)
\(\Rightarrow\frac{MC}{6}=\frac{5}{11}\Rightarrow MC=\frac{30}{11}\)cm
\(\Rightarrow\frac{AM}{5}=\frac{5}{11}\Rightarrow AM=\frac{25}{11}\)cm
A B C D O G N
a/
Vì NG//AB(gt) nên góc DNG = góc DAB
Mà góc DAB = góc BCD (2 góc đối trong hình bình hành)
Do vậy góc DNG = góc DAB
Xét ∆DNG và ∆BCD có:
góc DNG = góc DAB (gt)
góc NDG = góc CBD (so le trong AD//BC)
Nên ∆DNG ~ ∆BCD (g.g)
b/
Trong hình bình hành, 2 đường chéo cắt nhau tại trung điểm mỗi đường. Do đó OA=OC
Có MD=MC (gt)
Nên giao điểm G của 2 đường trung tuyến AM và DO là trọng tâm của ∆CDA
Suy ra \(GO=\dfrac{1}{3}DO\Rightarrow GO=\dfrac{1}{6}BD\Rightarrow DG=\dfrac{1}{3}BD\)(1)
Vì NG//AB, áp dụng định lý Ta-lét đảo đối với ∆DAB, suy ra \(NG=\dfrac{1}{3}AB\Leftrightarrow\dfrac{NG}{AB}=\dfrac{1}{3}\)(2)
c/Xét ∆DNG và ∆DAB có
\(\dfrac{DG}{DB}=\dfrac{NG}{AB}\left(=\dfrac{1}{3}\right)\)
góc DGN = góc DBA (đồng vị NG//AB)
Nên ∆DNG ~ ∆DBA (c.g.c)
Do vậy \(\dfrac{S_{DNG}}{S_{DAB}}=\left(\dfrac{1}{3}\right)^2=\dfrac{1}{9}\)
\(\Rightarrow\dfrac{S_{DNG}}{S_{ABCD}}=\dfrac{S_{DNG}}{2S_{DAB}}=\dfrac{1}{18}\Leftrightarrow18S_{DNG}=S_{ABCD}\)
Các bạn giúp mình với ngày mai mình nộp bài kiểm tra 15 phút rồi .