\(_{^{ }...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 4 2017

A B C D O G N

a/

Vì NG//AB(gt) nên góc DNG = góc DAB

Mà góc DAB = góc BCD (2 góc đối trong hình bình hành)

Do vậy góc DNG = góc DAB

Xét ∆DNG và ∆BCD có:

góc DNG = góc DAB (gt)

góc NDG = góc CBD (so le trong AD//BC)

Nên ∆DNG ~ ∆BCD (g.g)

b/

Trong hình bình hành, 2 đường chéo cắt nhau tại trung điểm mỗi đường. Do đó OA=OC

Có MD=MC (gt)

Nên giao điểm G của 2 đường trung tuyến AM và DO là trọng tâm của ∆CDA

Suy ra \(GO=\dfrac{1}{3}DO\Rightarrow GO=\dfrac{1}{6}BD\Rightarrow DG=\dfrac{1}{3}BD\)(1)

Vì NG//AB, áp dụng định lý Ta-lét đảo đối với ∆DAB, suy ra \(NG=\dfrac{1}{3}AB\Leftrightarrow\dfrac{NG}{AB}=\dfrac{1}{3}\)(2)

c/Xét ∆DNG và ∆DAB có

\(\dfrac{DG}{DB}=\dfrac{NG}{AB}\left(=\dfrac{1}{3}\right)\)

góc DGN = góc DBA (đồng vị NG//AB)

Nên ∆DNG ~ ∆DBA (c.g.c)

Do vậy \(\dfrac{S_{DNG}}{S_{DAB}}=\left(\dfrac{1}{3}\right)^2=\dfrac{1}{9}\)

\(\Rightarrow\dfrac{S_{DNG}}{S_{ABCD}}=\dfrac{S_{DNG}}{2S_{DAB}}=\dfrac{1}{18}\Leftrightarrow18S_{DNG}=S_{ABCD}\)

11 tháng 4 2017

Các bạn giúp mình với ngày mai mình nộp bài kiểm tra 15 phút rồi .

2 tháng 3 2017

a) trong tam giác ADC có AC=CD(gt)

=> tam giác ADC cân ( dhnb)

Mà CM là trung tuyến(M là trung điểm)

=>CM vuông góc với AD

=> GÓC CMD=90 độ

Xét tam giác HAD và tam giác MCD có

góc AHD= góc CMD (=90 độ)

góc ADC: chung

=> tam giác HAD đồng dạng với tam giác MCD

2 tháng 3 2017

b, tam giác HAD đồng dạng vs tam giác MCD

=>MD/HD=CD/AD

=>MD.AD=HD.CD

=>MD.1/2MD=HD.CD

=>MD^2/2=DH.CD

NG//AB mà N thuộc AB là sao vậy bạn?

23 tháng 8 2020

a) Xét 2 tam giác ADB và BCD có:

góc DAB = góc DBC (gt)

góc ABD = góc BDC ( so le trong )

nên tam giác ADB đồng dạng với tam giác BDC.(1)

b) Từ (1) ta được AB/BC = DB/CD = AB/BD

hay ta có; AD/BC = AB/BD <==> 3,5/BC = 2,5/5

==> BC= 3,5*5/2,5 = 7 (cm)

ta cũng có: DB/CD = AB/BD <==> 5/CD = 2,5/5

==> CD = 5*5/2,5 =10 (cm)

c) Từ (1) ta được;

AD/BC = DB/CD = AB/BD hay 3.5/7 = 5/10 = 2,5/5 = 1/2 .

ta nói tam giác ADB đồng giạc với tam giác BCD theo tỉ số đồng dạng là 1/2

mà tỉ số diện tích bằng bình phương tỉ số động dạng

do đó S ADB/ S BCD = (1/2)^2 = 1/4

https://olm.vn/hoi-dap/detail/197454392847.html

1 tháng 3 2019

thanhs nhìu bn nha

22 tháng 5 2021

B1): a): +)Ta có csc đường cao BD, CE cắt nhau tại I => BD vg góc vs AC; CE vg góc vs AB

             +)Xét tg AEC và tg ADB, có: AEC=AHB=90( BD vg góc vs AC; CE vg góc vs AB )

                                                          BAC chung

                    Do đó: tg AEC ~ tg ADB ( gg)

         => AE/AD= AC/AB=> AE*AB=AD*AC (đpcm)

     b) : Gợi ý hoi :)): Kẻ đcao AF xuống BC, sẽ đi qua điểm I; c/m ED//BC=> c/m đc tg AED~tg ABC theo trường hợp cgc, từ đó ta sẽ có đc 2 góc AED = ABC ( vì 2 tg trên ~ vs nhau )

                        

22 tháng 5 2021

A B C 5 5 6 M N

a, Vì BM là phân giác ^B nên : \(\frac{AB}{BC}=\frac{AM}{MC}\)( t/c )

\(\Rightarrow\frac{MC}{BC}=\frac{AM}{AB}\)( tỉ lệ thức )

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{MC}{BC}=\frac{AM}{AB}=\frac{MC+AM}{BC+AB}=\frac{5}{11}\)

\(\Rightarrow\frac{MC}{6}=\frac{5}{11}\Rightarrow MC=\frac{30}{11}\)cm 

\(\Rightarrow\frac{AM}{5}=\frac{5}{11}\Rightarrow AM=\frac{25}{11}\)cm