Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Olm chào em. Đây là toán nâng cao chuyên đề đếm số cách sắp xếp. Hôm nay, Olm sẽ hướng dẫn các em giải chi tiết dạng này như sau:
Giải:
Chữ số lớn nhất là chữ số 9
Các số thỏa mãn đề bài có dạng: \(\overline{ab9ba}\)
Trong đó có 9 cách chọn a
Có 10 cách chọn b
Số các số thỏa mãn đề bài là:
9 x 10 = 90 (số)
Vậy tập hợp A có 90 phần tử

Giải:
Gọi số tự nhiên thứ nhất thỏa mãn đề bài là \(x\) (\(x\in N\))
Thì số thứ hai, thứ ba, thứ tư lần lượt là:
\(x+1;x+2;x+3\)
Theo bài ra ta có:
\(x+x+1+x+2+x+3\) = 1374
(\(x+x+x+x\)) + (1+ 2+ 3) = 1374
4\(x\) + (3 + 3) = 1374
4\(x\) + 6 = 1374
4\(x\) = 1374 - 6
4\(x\) = 1368
\(x=1368:4\)
\(x\) = 342
Vậy số tự nhiên nhỏ nhất thỏa mãn đề bài là 342
Tổng của số lớn nhất và số nhỏ nhất là 1374:2=687
Khoảng cách giữa số lớn nhất và số nhỏ nhất là 4-1=3
Số nhỏ nhất là \(\frac{687+3}{2}=\frac{690}{2}=345\)

Giải:
Gọi số tự nhiên thứ nhất thỏa mãn đề bài là \(x\) (\(x\in N\))
Thì số thứ hai, thứ ba, thứ tư lần lượt là:
\(x+1;x+2;x+3\)
Theo bài ra ta có:
\(x+x+1+x+2+x+3\) = 3314
(\(x+x+x+x\)) + (1+ 2+ 3) = 3314
4\(x\) + (3 + 3) = 3314
4\(x\) + 6 = 3314
4\(x\) = 3314 - 6
4\(x\) = 3308
\(x=3308:4\)
\(x\) = 827
Vậy số tự nhiên nhỏ nhất thỏa mãn đề bài là 827
Cách giải:
- Gọi số nhỏ nhất là \(x\).
Bốn số liên tiếp là:
\(x , \textrm{ }\textrm{ } x + 1 , \textrm{ }\textrm{ } x + 2 , \textrm{ }\textrm{ } x + 3\) - Tổng của chúng:
\(x + \left(\right. x + 1 \left.\right) + \left(\right. x + 2 \left.\right) + \left(\right. x + 3 \left.\right) = 3314\) - Thu gọn:
\(4 x + 6 = 3314\) - Giải:
\(4 x = 3314 - 6 = 3308\) \(x = \frac{3308}{4} = 827\) - đúng thì ti

\(B=3^2+3^3+...+3^{99}\)
\(3B=3^3+3^4+...+3^{100}\)
\(3B-B=\left(3^3+3^4+...+3^{100}\right)-\left(3^2+3^3+...+3^{99}\right)\)
\(2B=3^{100}-3^2\)
\(B=\frac{3^{100}-9}{2}\)
\(2B+9=3^{2n+4}\)
\(\Leftrightarrow3^{2n+4}=3^{100}\)
\(\Leftrightarrow2n+4=100\)
\(\Leftrightarrow n=48\).

Gọi số tự nhiên cần tìm là A
Chia cho 29 dư 5 nghĩa là: A = 29p + 5 ( p ∈ N )
Tương tự: A = 31q + 28 ( q ∈ N )
Nên: 29p + 5 = 31q + 28=> 29(p - q) = 2q + 23
Ta thấy: 2q + 23 là số lẻ => 29(p – q) cũng là số lẻ ==>p – q >=1
Theo giả thiết A nhỏ nhất => q nhỏ nhất (A = 31q + 28)
=>2q = 29(p – q) – 23 nhỏ nhất
=> p – q nhỏ nhất
Do đó p – q = 1 => 2q = 29 – 23 = 6
=> q = 3
Vậy số cần tìm là: A = 31q + 28 = 31. 3 + 28 = 121
Các chữ số đó là :
\(111,112,121,122\)
tổng \(111+112+121+122=466\)