Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Khách hàng nam ở khoảng tuổi \(\left[ {40;50} \right)\) mua bảo hiểm nhân thọ nhiều nhất.
Khách hàng nữ ở khoảng tuổi \(\left[ {30;40} \right)\) mua bảo hiểm nhân thọ nhiều nhất.
Ta có thể biết mốt của mẫu số liệu đó.

Khoảng tuổi | [20;30) | [30;40) | [40;50) | [50;60) | [60;70) |
Số khách | 3 | 9 | 6 | 4 | 2 |

Bài giải
Gọi hệ trục Oxyz với A(0;0;0), B(a;0;0), C(a;a;0), D(0;a;0). Gọi S(p;q;h).
SA = SB = a:
p² + q² + h² = a²
(p - a)² + q² + h² = a² ⇒ p = a/2
SC = a√3:
a²/4 + (q - a)² + h² = 3a²
Từ SA: q² + h² = 3a²/4 ⇒ a²/4 + q² - 2aq + a² + h² = 3a²
2a² - 2aq = 3a² ⇒ q = -a/2 ⇒ h² = a²/2 ⇒ h = a√2/2
S(a/2; -a/2; a√2/2)
H(a/4; -a/4; a√2/4), K(3a/4; -a/4; a√2/4)
M(x; x; 0), 0 ≤ x ≤ a
N(a; t; 0) ∈ BC
HK = (a/2; 0; 0)
HM = (x - a/4; x + a/4; -a√2/4)
n = HK × HM = (0; a²√2/8; a/2(x + a/4))
Mặt phẳng (HKM): (a²√2/8)(y + a/4) + (a/2)(x + a/4)(z - a√2/4) = 0
Với N(a; t; 0): t = x ⇒ N(a; x; 0)
HK = a/2, MN = a - x
d = √[(x + a/4)² + a²/8]
S = (a/2 + a - x)/2 × d = (3a/2 - x)/2 × √[(x + a/4)² + a²/8]
Giải S'(x) = 0 ⇒ x = 5a/8
Kết luận: x = 5a/8 thì diện tích HKMN nhỏ nhất
Cho mình xin 1 tick với ạ

tham khảo
A là biến cố "Cường đứng đầu hàng", \(P\left(A\right)=\dfrac{6!.C^1_2}{7!}=\dfrac{2}{7}\)
B là biến cố "Trọng đứng đầu hàng", \(P\left(B\right)=\dfrac{6!.C^1_2}{7!}=\dfrac{2}{7}\)
AB là biến cố "Trọng và Cường cùng đứng đầu hàng" \(P\left(AB\right)=\dfrac{2!.5!}{7!}=\dfrac{1}{21}\)
\(A\cup B\)
là biến cố "Có ít nhất một trong hai bạn Cường và Trọng đứng ở đầu hàng"
\(P\left(A\cup B\right)=P\left(A\right)+P\left(B\right)-P\left(A\right).P\left(B\right)=\dfrac{11}{21}\)
THAM KHẢO:
A là biến cố "Cường đứng đầu hàng", P(A)=\(\dfrac{6!.C\dfrac{1}{2}}{7!}=\dfrac{2}{7}\)
B là biến cố "Trọng đứng đầu hàng", P(B)=\(\dfrac{6!.C\dfrac{1}{2}}{7!}=\dfrac{2}{7}\)
AB là biến cố "Trọng và Cường cùng đứng đầu hàng" P(AB)=\(\dfrac{2!.5!}{7!}=\dfrac{1}{21}\)
A∪B là biến cố "Có ít nhất một trong hai bạn Cường và Trọng đứng ở đầu hàng"
P(A∪B)=P(A)+P(B)−P(A).P(B)=\(\dfrac{11}{21}\)

a)
b) Nhóm chứa giá trị trung vị chiều cao thành viên đội Sao La là \(\begin{array}{*{20}{l}}{\;\left[ {180;185} \right)}\end{array}\).
Nhóm chứa giá trị trung vị chiều cao thành viên đội Kim Ngưu là \(\begin{array}{*{20}{l}}{\;\left[ {185;190} \right)}\end{array}\).
Tham khảo bảng sau:
• Đối với khách hàng nam:
Nhóm chứa mốt của mẫu số liệu trên là nhóm \(\left[ {40;50} \right)\).
Do đó: \({u_m} = 40;{n_{m - 1}} = 6;{n_m} = 10;{n_{m + 1}} = 7;{u_{m + 1}} - {u_m} = 50 - 40 = 10\)
Mốt của mẫu số liệu ghép nhóm là:
\({M_O} = {u_m} + \frac{{{n_m} - {n_{m - 1}}}}{{\left( {{n_m} - {n_{m - 1}}} \right) + \left( {{n_m} - {n_{m + 1}}} \right)}}.\left( {{u_{m + 1}} - {u_m}} \right) = 40 + \frac{{10 - 6}}{{\left( {10 - 6} \right) + \left( {10 - 7} \right)}}.10 = 45,7\)
Vậy ta có thể dự đoán khách hàng nam 46 tuổi có nhu cầu mua bảo hiểm nhiều nhất.
• Đối với khách hàng nữ:
Nhóm chứa mốt của mẫu số liệu trên là nhóm \(\left[ {30;40} \right)\).
Do đó: \({u_m} = 30;{n_{m - 1}} = 3;{n_m} = 9;{n_{m + 1}} = 6;{u_{m + 1}} - {u_m} = 40 - 30 = 10\)
Mốt của mẫu số liệu ghép nhóm là:
\({M_O} = {u_m} + \frac{{{n_m} - {n_{m - 1}}}}{{\left( {{n_m} - {n_{m - 1}}} \right) + \left( {{n_m} - {n_{m + 1}}} \right)}}.\left( {{u_{m + 1}} - {u_m}} \right) = 30 + \frac{{9 - 3}}{{\left( {9 - 3} \right) + \left( {9 - 6} \right)}}.10 = 36,7\)
Vậy ta có thể dự đoán khách hàng nữ 37 tuổi có nhu cầu mua bảo hiểm nhiều nhất.