Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
- Đỉnh: S
- Cạnh bên: SD, SE, SF
- Mặt bên: SDE, SEF, SDF
- Mặt đáy: DEF
- Đường cao: SO
- Một trung đoạn: SI
![](https://rs.olm.vn/images/avt/0.png?1311)
- Đỉnh: S
- Cạnh bên: SE, SF, SG, SH
- Mặt bên: SEF, SFG, SGH. SEH
- Mặt đáy: EFGH
- Đường cao: SI
- Một trung đoạn: SK
![](https://rs.olm.vn/images/avt/0.png?1311)
- Xét tam giác ABC có, NA=NB, MA=MC
=> NM là đường trung bình của tam giác ABC
=> NM // BC, \(NM = \frac{1}{2}AB\)
- Xét tam giác GMN và tam giác GBC có NM // BC => ΔGMN ∽ ΔGBC
![](https://rs.olm.vn/images/avt/0.png?1311)
- Xét tam giác BID vuông tại I, có
\(I{{\rm{D}}^2} = B{{\rm{D}}^2} - B{I^2} = {10^2} - {5^2}\)
=> ID ≈ 8,66 (cm)
- Diện tích tam giác BCD là:
\({S_{BC{\rm{D}}}} = \frac{1}{2}.I{\rm{D}}.BC = \frac{1}{2}.8,66.10 = 43,3\left( {c{m^2}} \right)\)
- Thể tích hình chóp là:
\(V = \frac{1}{3}.S.h = \frac{1}{3}.43,3.12 \approx 173,2(c{m^3})\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Cặp tam giác vuông ở hình d. Vì cạnh huyền và một cạnh góc vuông của tam giác này tỉ lệ với cạnh huyền và một cạnh góc vuông của tam giác vuông kia
![](https://rs.olm.vn/images/avt/0.png?1311)
Nửa chu vi của hình tam giác đều ABC là:
\(p = \frac{1}{2}\left( {60 + 60 + 60} \right) = 90(cm)\)
Diện tích xung quanh của hình chóp tam giác đều S. ABC là:
\({S_{xq}} = 90.90 = 8100(c{m^2})\)
Vậy diện tích các mặt bên của hình chóp tam giác đều là 8100 cm2
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Xét hai tam giác AEH (vuông tại E) và tam giác AHB (vuông tại H) có: góc A chung
=> ΔAEH ∽ ΔAHB
b) Xét hai tam giác AFH (vuông tại F) và tam giác AHC (vuông tại H) có: góc A chung
ΔAFH ∽ ΔAHC
c) Vì ΔAEH ∽ ΔAHB nên:
\(\frac{{A{\rm{E}}}}{{AH}} = \frac{{AH}}{{AB}} \Rightarrow A{\rm{E}} = \frac{{A{H^2}}}{{AB}}\) (1)
Vì ΔAFH ∽ ΔAHC nên:
\(\frac{{AF}}{{AH}} = \frac{{AH}}{{AC}} \Rightarrow AF = \frac{{A{H^2}}}{{AC}}\)(2)
Từ (1) và (2) ta có:
\[\frac{{A{\rm{E}}}}{{AF}} = \frac{{AC}}{{AB}} \Rightarrow \frac{{AF}}{{AB}} = \frac{{A{\rm{E}}}}{{AC}}\]
Xét hai tam giác ΔAFE và ΔABC có:
Góc A chung
\[\frac{{AF}}{{AB}} = \frac{{A{\rm{E}}}}{{AC}}\]
Suy ra ΔAFE ∽ ΔABC (c.g.c)
Hình chóp tam giác đều S. ABC có:
- Đỉnh: S
- Cạnh bên: SA, SB, SC.
- Mặt đáy: tam giác ABC.
- Đường cao: SO.
- Trung đoạn: SH