Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Trong 11 số tự nhiên bất kỳ, số dư của chúng khi chia cho 10 có 10 chữ số sau : 0;1;2;3;4;5;6;7;8 và 9.
Có 11 số nhưng chỉ có 10 số dư
=> Có ít nhất 2 số trong 11 số đó có cùng số dư khi chia cho 10.
Mà những số có chữ số tận cùng là 0 thì chia hết cho 10
=> Trong 11 STN bất kỳ luôn có 2 số có chữ số tận cùng giống nhau.
![](https://rs.olm.vn/images/avt/0.png?1311)
tổn của 10 số này có tận cùng là 5. không tin thì bạn thử từ 1 đến 10 xem =55
![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy cho biết tổng 10 số tự nhiên liên tiếp bất kỳ có chữ số tận cùng là chữ số 5.
![](https://rs.olm.vn/images/avt/0.png?1311)
giả sử 10 chữ số liên tiếp là 1,2,3...10. Ta sẽ có tổng là 1+2+3+4+5+6+7+8+9+10= 55.Vậy kết quả là 5 .
Đáp số : 5 .
K CHO MIK NHA!!!!!!!!!!!!!
![](https://rs.olm.vn/images/avt/0.png?1311)
Gọi 3 số đó lần lượt là 2K;2K+1 và 2K+2
Theo đề bài ra ta có thì phải chứng minh trong 3 STN liên tiếp phải có tổng 2 số tự nhiên bất kì chia hết cho 2
Vậy ta có 3 TH là 2K+(2K+2) và 2K+2K+1 và (2K+2)+(2K+1)
Xét TH1: 2K+(2K+2)
Ta có: 2K+(2K+2)= (2K+2K)+2 =4K+2
Vì 4 chia hết cho và 2 chia hết cho 2 => 4K+2 chia hết cho 2
Xét TH2: 2K+(2K+1)
Ta có: 2K+(2K+1)= (2K+2K)+1= 4K+1
Vì 4 chia hết cho 2 => 4K chia hết cho 2 nhưng 1 không chia hết cho 2
=> 4K+1 không chia hết cho 2
Xét TH3: (2K+2)+(2K+1)
Ta có: (2K+2)+(2K+1)= (2K+2K)+(1+2)= 4K+3
Vì 4 chia hết cho 2 => 4K chia hết cho 2 nhưng 3 không chia hết cho 2
=> 4K+3 không chia hết cho 2
Từ 3 TH trên => trong 3 số tự nhiên bất kỳ, bao giờ cũng có thể tìm được 2 số sao cho tổng của chúng chia hết cho 2.
c/s tận cùng có thể : 0,1,2,...,9 ( có 10 số )
Do 11 : 10 = 1 ( dư 1 )
Áp dụng nguyên lí Đi-rich-lê có ít nhất 2 số có tận cùng giống nhau
:Ta có:
11:10=1 dư 1
⇒ Chữ số tận cùng có thể có là: 0; 1; 2; 3; 4; 5; 6; 7; 8; 9; (có 10 số)
⇒ Có ít nhất 2 số có chữ số tận cùng giống nhau