Hằng ngày, mực nước của con kênh lên xuống theo thủy triều. Độ sâu  của mực nước...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 4 2022

\(h=3cos\left(\dfrac{\pi t}{6}+\dfrac{\pi}{3}\right)+12\le3.1+12=15\left(m\right)\) 

" = " \(\Leftrightarrow\dfrac{\pi t}{6}+\dfrac{\pi}{3}=2k\pi\left(k\in Z\right)\)  \(\Leftrightarrow\dfrac{t}{6}+\dfrac{1}{3}=2k\Leftrightarrow t=12k-2\)

t min ; t > 0 \(\Rightarrow k=1\) thì t = 10 (h)

17 tháng 12 2017

Chọn B

Mực nước của kênh cao nhất khi h lớn nhất

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

+) Độ sâu của mực nước là 15m thì h = 15.

Khi đó

 \(\begin{array}{l}15 = 3\cos \left( {\frac{{\pi t}}{6} + 1} \right) + 12\\ \Leftrightarrow \cos \left( {\frac{{\pi t}}{6} + 1} \right) = 1\\ \Leftrightarrow \cos \left( {\frac{{\pi t}}{6} + 1} \right) = \cos 0\\ \Leftrightarrow \frac{{\pi t}}{6} + 1 = k2\pi \\ \Leftrightarrow t = \frac{{6\left( {k2\pi  - 1} \right)}}{\pi };k \in Z\end{array}\)

Vì \(0 \le t < 24\) nên

 \(\begin{array}{l}0 \le \frac{{6\left( {k2\pi  - 1} \right)}}{\pi } \le 24\\ \Leftrightarrow 0 < k \le 2\end{array}\)

Lại do \(k \in Z \Rightarrow k \in \left\{ {1;2} \right\} \Rightarrow t \in \left\{ {\frac{{6\left( {2\pi  - 1} \right)}}{\pi };\frac{{6\left( {4\pi  - 1} \right)}}{\pi }} \right\}\)

+) Độ sâu của mực nước là 9m thì h = 9.

Khi đó

 \(\begin{array}{l}9 = 3\cos \left( {\frac{{\pi t}}{6} + 1} \right) + 12\\ \Leftrightarrow \cos \left( {\frac{{\pi t}}{6} + 1} \right) =  - 1\\ \Leftrightarrow \cos \left( {\frac{{\pi t}}{6} + 1} \right) = \cos \pi \\ \Leftrightarrow \frac{{\pi t}}{6} + 1 = \pi  + k2\pi \\ \Leftrightarrow t = \frac{{6\left( {k2\pi  + \pi  - 1} \right)}}{\pi };k \in Z\end{array}\)

Vì \(0 \le t < 24\) nên

 \(\begin{array}{l}0 \le \frac{{6\left( {k2\pi  + \pi  - 1} \right)}}{\pi } \le 24\\ \Leftrightarrow 0 < k \le 1\end{array}\)

Lại do \(k \in Z \Rightarrow k = 1 \Rightarrow t = \frac{{6\left( {3\pi  - 1} \right)}}{\pi }\)

+) Độ sâu của mực nước là 10,5m thì h = 10,5.

Khi đó

 \(\begin{array}{l}10,5 = 3\cos \left( {\frac{{\pi t}}{6} + 1} \right) + 12\\ \Leftrightarrow \cos \left( {\frac{{\pi t}}{6} + 1} \right) =  - \frac{1}{2}\\ \Leftrightarrow \cos \left( {\frac{{\pi t}}{6} + 1} \right) = \cos \frac{{2\pi }}{3}\\ \Leftrightarrow \left[ \begin{array}{l}\frac{{\pi t}}{6} + 1 = \frac{{2\pi }}{3} + k2\pi \\\frac{{\pi t}}{6} + 1 =  - \frac{{2\pi }}{3} + k2\pi \end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}t = \frac{{6\left( {\frac{{2\pi }}{3} + k2\pi  - 1} \right)}}{\pi };k \in Z\\t = \frac{{6\left( { - \frac{{2\pi }}{3} + k2\pi  - 1} \right)}}{\pi };k \in Z\end{array} \right.\end{array}\)

Với \(t = \frac{{6\left( {\frac{{2\pi }}{3} + k2\pi  - 1} \right)}}{\pi };k \in Z\)

Vì \(0 \le t < 24\) nên

 \(\begin{array}{l}0 \le \frac{{6\left( {\frac{{2\pi }}{3} + k2\pi  - 1} \right)}}{\pi } \le 24\\ \Leftrightarrow 0 \le k \le 2\end{array}\)

Lại do \(k \in Z \Rightarrow k \in \left\{ {0;1;2} \right\} \Rightarrow t \in \left\{ {\frac{{6\left( {\frac{{2\pi }}{3} - 1} \right)}}{\pi };\frac{{6\left( {\frac{{8\pi }}{3} - 1} \right)}}{\pi };\frac{{6\left( {\frac{{14\pi }}{3} - 1} \right)}}{\pi }} \right\}\)

Với \(t = \frac{{6\left( { - \frac{{2\pi }}{3} + k2\pi  - 1} \right)}}{\pi };k \in Z\)

Vì \(0 \le t < 24\) nên

 \(\begin{array}{l}0 \le \frac{{6\left( { - \frac{{2\pi }}{3} + k2\pi  - 1} \right)}}{\pi } \le 24\\ \Leftrightarrow 0 < k \le 2\end{array}\)

Lại do \(k \in Z \Rightarrow k \in \left\{ {1;2} \right\} \Rightarrow t \in \left\{ {\frac{{6\left( { - \frac{{2\pi }}{3} - 1} \right)}}{\pi };\frac{{6\left( {\frac{{4\pi }}{3} - 1} \right)}}{\pi };\frac{{6\left( {\frac{{10\pi }}{3} - 1} \right)}}{\pi }} \right\}\)

18 tháng 7 2019

AH
Akai Haruma
Giáo viên
22 tháng 9 2021

Lời giải:

$\sin (\frac{\pi t}{18}-\frac{\pi}{6})\leq 1$ với mọi $t\in [0;24]$

$\Rightarrow h\leq 2.1+5=7$ 

Vậy $h_{\max}=7\Leftrightarrow \sin (\frac{\pi t}{18}-\frac{\pi}{6})=1$

$\Leftrightarrow \frac{\pi t}{18}-\frac{\pi}{6})=\frac{\pi}{2}+2k\pi$ với $k$ nguyên 

$\Leftrightarrow \frac{t}{18}-\frac{1}{6}=\frac{1}{2}+2k$ với $k$ nguyên 

$\Leftrightarrow t=12+36k$ với $k$ nguyên.

Do $t\in [0;24]$ nên $t=12$ 

Đáp án C.

1. Cho f(x) = x3- \(\frac{1}{2}\)x2 - 4x . Tìm x sao cho f ' (x) < 0 2. Tính đạo hàm của hàm số y = \(\sqrt{cos2x}\) 3. Cho hàm số f(x) xác định trên R bởi f(x) = \(\sqrt{x^2}\) . Giá Trị f ' (0) bằng 4. Cho hàm số y = \(\left(\frac{1-\sqrt{x}}{1+\sqrt{x}}\right)^2\) . Đạo hàm của hàm số f(x) là 5. Cho hàm số f(x) xác định trên D = [0;\(+\infty\)) cho bởi f(x) = x\(\sqrt{x}\) có đạo hàm là 6. Hàm số f(x) =...
Đọc tiếp

1. Cho f(x) = x3- \(\frac{1}{2}\)x2 - 4x . Tìm x sao cho f ' (x) < 0

2. Tính đạo hàm của hàm số y = \(\sqrt{cos2x}\)

3. Cho hàm số f(x) xác định trên R bởi f(x) = \(\sqrt{x^2}\) . Giá Trị f ' (0) bằng

4. Cho hàm số y = \(\left(\frac{1-\sqrt{x}}{1+\sqrt{x}}\right)^2\) . Đạo hàm của hàm số f(x) là

5. Cho hàm số f(x) xác định trên D = [0;\(+\infty\)) cho bởi f(x) = x\(\sqrt{x}\) có đạo hàm là

6. Hàm số f(x) = \(\left(\sqrt{x}-\frac{1}{\sqrt{x}}\right)^2\) xác đinh trên D = (0;+\(\infty\)) . Đạo hàm của f(x) là

7. Đạo hàm của hàm số \(y=\) \(\frac{x^2+x+3}{x^2+x+1}\) bằng biểu thức có dạng \(\frac{ax+b}{\left(x^2+x-1\right)^2}\) . Khi đó a + b bằng

8. Cho hàm số \(y=\) \(-x^3+2x^2\) có đồ thị (C) . Có bao nhiêu tiếp tuyến của đồ thị (C) song song với đường thẳng \(y=\) x

9. Cho hàm số \(y=\) \(\frac{5}{3}x^3-x^2+4\) có đồ thị (C) . Tiếp tuyến của (C) tại điểm có hoành độ x0=3 . Tính hệ số góc

10. Cho đồ thị hàm số \(y=\) \(x^3-2x^2+2x\) có đồ thị (C) . Gọi \(x_1,x_2\) là hoành độ các điểm M , N trên (C) mà tại đó tiếp tuyến của (C) vuông góc với đường thẳng \(y=-x+2019\) . Khi đó \(x_1+x_2\) bằng

0
QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

a) Tại thời điểm t = 2 độ sâu của nước là: \(h\left( 2 \right) = 0,8cos0,5.2 + 4 \approx 4,43{\rm{ }}m.\)

Vậy độ sâu của nước ở thời điểm t = 2 là khoảng 4,43 m.

b) Các thời điểm để mực nước sâu là 3,6m tương ứng với phương trình \(0,8cos0,5t + 4 = 3,6\).

Ta có: \(0,8cos0,5t + 4 = 3,6\)

\(\begin{array}{l} \Leftrightarrow cos0,5t =  - \frac{1}{2} = cos\frac{{2\pi }}{3}\\ \Leftrightarrow 0,5t =  \pm \frac{{2\pi }}{3} + k2\pi ,k \in \mathbb{Z}\\ \Leftrightarrow t =  \pm \frac{{4\pi }}{3} + k4\pi ,k \in \mathbb{Z}\end{array}\)

Với \(t = \frac{{4\pi }}{3} + k4\pi \), trong 12 tiếng ta có các thời điểm \(0 \le \frac{{4\pi }}{3} + k4\pi  \le 12 \Leftrightarrow  - 0,3 \le k \le 0,62 \Rightarrow k = 0. \Rightarrow t = \frac{{4\pi }}{3}\)

Với \(t =  - \frac{{4\pi }}{3} + k4\pi \), trong 12 tiếng ta có các thời điểm \(0 \le  - \frac{{4\pi }}{3} + k4\pi  \le 12 \Leftrightarrow 0,3 \le k \le 1,28 \Rightarrow k = 1 \Rightarrow t =  - \frac{{4\pi }}{3} + 4\pi  = \frac{{8\pi }}{3}\)

Vậy tại các thời điểm \(t = \frac{{4\pi }}{3}\), \(t = \frac{{8\pi }}{3}\) giờ thì tàu có thể hạ thủy.

NV
8 tháng 2 2020

1/ \(\overrightarrow{AB}^2-\overrightarrow{AD}^2=\overrightarrow{BC}^2-\overrightarrow{CD}^2\)

\(\Leftrightarrow\left(\overrightarrow{AB}+\overrightarrow{AD}\right)\left(\overrightarrow{AB}-\overrightarrow{AD}\right)=\left(\overrightarrow{BC}+\overrightarrow{CD}\right)\left(\overrightarrow{BC}-\overrightarrow{CD}\right)\)

\(\Leftrightarrow\left(\overrightarrow{AB}+\overrightarrow{AD}\right).\overrightarrow{DB}=\overrightarrow{BD}\left(\overrightarrow{BC}-\overrightarrow{CD}\right)=\overrightarrow{DB}\left(\overrightarrow{CB}+\overrightarrow{CD}\right)\)

Gọi M là trung điểm BD

\(\Rightarrow2\overrightarrow{AM}.\overrightarrow{DB}=2\overrightarrow{CM}.\overrightarrow{DB}\)

\(\Leftrightarrow\overrightarrow{DB}.\left(\overrightarrow{AM}-\overrightarrow{CM}\right)=0\)

\(\Leftrightarrow\overrightarrow{BD}.\overrightarrow{AC}=0\)

NV
8 tháng 2 2020

2/ \(A=\left|\overrightarrow{a}-\overrightarrow{b}\right|\Rightarrow A^2=\overrightarrow{a}^2-2\overrightarrow{a}.\overrightarrow{b}+\overrightarrow{b}^2\)

\(=a^2+b^2-2ab.cos\left(\overrightarrow{a};\overrightarrow{b}\right)=4^2+5^2-2.4.5.cos120^0=61\)

\(\Rightarrow A=\sqrt{61}\)

b/ \(B=\left|2\overrightarrow{a}+\overrightarrow{b}\right|\Rightarrow B^2=4a^2+b^2+4\overrightarrow{a}.\overrightarrow{b}\)

\(=4a^2+b^2+4ab.cos120^0=49\)

\(\Rightarrow B=7\)

3/ \(\left|\overrightarrow{x}\right|=\left|\overrightarrow{a}-2\overrightarrow{b}\right|\Rightarrow\left|\overrightarrow{x}\right|^2=a^2+4b^2-4\overrightarrow{a}.\overrightarrow{b}=12\)

\(\Rightarrow\left|\overrightarrow{x}\right|=2\sqrt{3}\)

\(\left|\overrightarrow{y}\right|^2=a^2+b^2-2\overrightarrow{a}.\overrightarrow{b}=5\Rightarrow\left|\overrightarrow{y}\right|=\sqrt{5}\)

\(\overrightarrow{x}.\overrightarrow{y}=\left(\overrightarrow{a}-2\overrightarrow{b}\right)\left(\overrightarrow{a}-\overrightarrow{b}\right)=a^2+2b^2-3\overrightarrow{a}.\overrightarrow{b}=4\)

\(\Rightarrow cos\alpha=\frac{\overrightarrow{x}.\overrightarrow{y}}{\left|\overrightarrow{x}\right|.\left|\overrightarrow{y}\right|}=\frac{4}{2\sqrt{15}}=\frac{2\sqrt{15}}{15}\)