Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Gọi thời gian người thứ nhất làm riêng xong công việc là x(giờ)
Gọi thời gian người thứ hai làm riêng xong công việc là y(giờ)
Điều kiện: x; y > 0
Trong 1 giờ người thứ nhất làm được 1/x (công việc)
Trong 1 giờ người thứ hai làm được 1/y (công việc)
Vì hai người làm chung trong 15 giờ được 1/6 công việc nên ta có phương trình:
Vì người thứ nhất làm một mình trong 12 giờ và người thứ hai làm một mình trong 20 giờ được 1/5 công việc nên ta có phương trình:
Từ (1) và (2) ta có hệ phương trình:
Vậy người thứ nhất làm riêng xong công việc trong 360 giờ; người thứ hai làm riêng xong công việc trong 120 giờ.

Gọi x là thời gian người thứ nhất hoàn thành x (ngày)
Gọi y là thời gian người thứ hai hoàn thành y (ngày )
điều kiện ( x,y >o)
Trong 1 ngàyngười thứ 1 làm được \(\dfrac{1}{x}\)công việc
Trong 1 ngày người thứ 2 làm được \(\dfrac{1}{y}\)công việc
Vì 2 người cùng làm chung 1 công việc thì 20 ngày thì xong nên ta có :
\(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{20}\)
Nếu người thứ nhất làm 12 ngày và người thứ hai làm trong 15 ngày chỉ được công việc
=))\(\dfrac{12}{x}\)+\(\dfrac{15}{y}\)=\(\dfrac{2}{3}\)(2)
Từ (1) và (2) Ta có hpt :
\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{20}\\\dfrac{12}{x}+\dfrac{15}{y}=\dfrac{2}{3}\end{matrix}\right.\) Đặt \(\dfrac{1}{x}\)là u; \(\dfrac{1}{y}\)là v
Ta có
\(\left\{{}\begin{matrix}u+v=\dfrac{1}{20}\\12u+15v=\dfrac{2}{3}\end{matrix}\right.\left(=\right)\left\{{}\begin{matrix}12u+12v=\dfrac{3}{5}\left(x12\right)\\12u+15v=\dfrac{2}{3}\end{matrix}\right.\left(=\right)-3v=-\dfrac{1}{15}\left(=\right)v=\dfrac{1}{45
}\)
Thay v=\(\dfrac{1}{45}\) vào pt \(12u+15v=\dfrac{2}{3}\left(=\right)12u+15\left(\dfrac{1}{45}\right)=\dfrac{2}{3}.....\left(=\right)12u+\dfrac{1}{3}=\dfrac{2}{3}\left(=\right)12u=\dfrac{2}{3}-\dfrac{1}{3}\left(=\right)12u=\dfrac{1}{3}\left(=\right)u=\dfrac{1}{36}\)
\(\dfrac{1}{x}=\dfrac{1}{36}->x=36;\dfrac{1}{y}=\dfrac{1}{45}->y=45\)
Vậy Khi làm riêng đội 1 hoàn thành trong 36 ngày , đội thứ 2 hoàn thành trong 45 ngày
Đổi: \(1h20p=\dfrac{4}{3}h\)
Gọi \(a,b\left(giờ\right)\) là thời gian làm một mình xong việc của hai người \(\left(a,b>0\right)\)
\(\Rightarrow\) Trong \(1h\) người \(1\) làm đc \(\dfrac{1}{a}\) việc.
\(\Rightarrow\) Trong \(1h\) người \(2\) làm đc \(\dfrac{1}{b}\) việc
Nếu hai người cùng làm một lúc thì sau \(\dfrac{4}{3}h\) là xong nên ta có phương trình:
\(\dfrac{4a}{3}+\dfrac{4b}{3}=1\)
Lại có: Người \(1\) làm trong \(\dfrac{1}{6}h\) và người \(2\) làm trong \(\dfrac{1}{5}\) giờ thì được \(\dfrac{1}{15}\) việc nên ta có phương trình:\(\dfrac{a}{6}+\dfrac{b}{5}=\dfrac{2}{15}\left(2\right)\)
Từ: \(\left(1\right)+\left(2\right)\) ta có hệ:
\(\left\{{}\begin{matrix}\dfrac{4a}{3}+\dfrac{4b}{3}=1\\\dfrac{a}{6}+\dfrac{b}{5}=\dfrac{2}{15}\end{matrix}\right.\)
\(\Leftrightarrow\) Tự giải hệ ta được nghiệm:
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}a=2\\b=4\end{matrix}\right.\) \(\left(tm\right)\)
Vậy nếu làm một mình thì người một làm trong \(2h\) và người hai làm trong \(4h\)