Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Gọi thời gian làm riêng hoàn thành công việc của lớp 9A là x(giờ)
(Điều kiện: x>0)
Thời gian làm riêng hoàn thành công việc của lớp 9B là x+1(giờ)
Trong 1 giờ, lớp 9A làm được \(\dfrac{1}{x}\)(công việc)
Trong 1 giờ, lớp 9B làm được \(\dfrac{1}{x+1}\)(công việc)
Trong 1 giờ, hai lớp làm được \(1:\dfrac{12}{7}=\dfrac{7}{12}\)(công việc)
Do đó, ta có phương trình: \(\dfrac{1}{x}+\dfrac{1}{x+1}=\dfrac{7}{12}\)
=>\(\dfrac{x+1+x}{x\left(x+1\right)}=\dfrac{7}{12}\)
=>7x(x+1)=12(2x+1)
=>\(7x^2+7x-24x-12=0\)
=>\(7x^2-17x-12=0\)
=>\(7x^2-21x+4x-12=0\)
=>(x-3)(7x+4)=0
=>\(\left[{}\begin{matrix}x-3=0\\7x+4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\left(nhận\right)\\x=-\dfrac{4}{7}\left(nhận\right)\end{matrix}\right.\)
Vậy: Thời gian làm riêng hoàn thành công việc của lớp 9A là 3 giờ
Thời gian làm riêng hoàn thành công việc của lớp 9B là 3+1=4 giờ
![](https://rs.olm.vn/images/avt/0.png?1311)
Vậy nếu làm 1 mình thì lớp 9A làm xong công việc trong 5 giờ , lớp 9B làm xong trong 7 giờ
![](https://rs.olm.vn/images/avt/0.png?1311)
Gọi số ngày lớp 9A cần để hoàn thành việc tu sửa khu vườn thực nghiệm là: a ( ngày, a>6)>>> Trong 1 ngày lớp 9A làm được 1/a công việc.
số ngày lớp 9B cần để tu sủa lại khu vườn thực nghiệm là: b ( ngày, b>4)>> 1 ngày lớp 9B làm được 1/b công việc.
Theo đề bài ta có:
-Hai lớp 9A và 9B cùng tu sửa khu vườn thì 4 ngày thì xong >> trong 1 ngày hai lớp làm được 1/4 công việc.>> \(\dfrac{1}{a}\)+\(\dfrac{1}{b}\)=\(\dfrac{1}{4}\)(1)
Muốn hoàn thành công việc ấy thì lớp 9A cần ít thời gian hơn lớp 9B là 6 ngày, ta có phườn trình: b= a-6 <=> a-b=6(2)
Giải hệ phương trình>>> a=12 (tm) , b=6(tm)
Vậy.....