Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Xét tam giác APB và AQB, ta có:
\(\tan {35^ \circ } = \frac{{AB}}{{PB}} = \frac{{AB}}{{300 + QB}}\) và \(\tan {48^ \circ } = \frac{{AB}}{{QB}}\)
\(\begin{array}{l} \Rightarrow AB = \tan {35^ \circ }.\left( {300 + QB} \right) = \tan {48^ \circ }.QB\\ \Leftrightarrow \tan {35^ \circ }.300 + \tan {35^ \circ }.QB = \tan {48^ \circ }.QB\\ \Leftrightarrow \tan {35^ \circ }.300 = \left( {\tan {{48}^ \circ } - \tan {{35}^ \circ }} \right).QB\\ \Leftrightarrow QB = \frac{{\tan {{35}^ \circ }.300}}{{\tan {{48}^ \circ } - \tan {{35}^ \circ }}}\end{array}\)
Mà \(AB = \tan {48^ \circ }.QB\)
\( \Rightarrow AB = \tan {48^ \circ }.\frac{{\tan {{35}^ \circ }.300}}{{\tan {{48}^ \circ } - \tan {{35}^ \circ }}} \approx 568,5\;(m)\)
Vậy tháp hải đăng cao khoảng 568,5 m.
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có: Chiều cao của tháp DC = DC1 + C1C = 1,3 + DC1
=> DC = 1,3 +
=> DC ≈ 22,8m
cãi đi bé Bài 11 trang 60 sgk hình học 10 - loigiaihay.com
![](https://rs.olm.vn/images/avt/0.png?1311)
Có:
\(DC=AC.tan43^o=\left(AB+BC\right).tan43^o\).
\(DC=BC.tan67^o\).
Vì vây:
\(\left(AB+BC\right).tan43^o=BC.tan67^o\)
\(\Leftrightarrow BC=\dfrac{AB.tan43^o}{tan67^o-tan43^o}=26,55m\).
Suy ra: \(DC=BC.tan67^o=26,55.tan67^o=62,55m\).
Vậy chiều cao DC của chân tháp là 62,55m.
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có: AQ = ABcot480
AP = ABcot350
QP = AB(cot350 – cot480)
=> AB = ≈
Tính được AB ≈ 568,50m
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có: A1B1 = AB = 12 m
Xét ΔDC1A1 có: C1A1 = C1D.cot49o
Xét ΔDC1B1 có: C1B1 = C1D.cot35o
Mà A1B1 = C1B1 - C1A1 = C1D.cot35o - C1D.cot49o
= C1D.(cot35o - cot49o)
⇒ CD = CC1 + C1D = 1,3 + 21,47 = 22,77 m.
Vậy chiều cao của tháp là 22,77m.
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có: \(\widehat {D{A_1}{C_1}} = \widehat {{A_1}D{B_1}} + \widehat {D{B_1}{A_1}} \Rightarrow \widehat {{A_1}D{B_1}} = {49^ \circ } - {35^ \circ } = {14^ \circ }\)
Áp dụng định lí sin trong tam giác \({A_1}D{B_1}\) , ta có:
\(\begin{array}{l}\frac{{{A_1}D}}{{\sin {B_1}}} = \frac{{{A_1}{B_1}}}{{\sin D}} \Leftrightarrow \frac{{{A_1}D}}{{\sin {{35}^ \circ }}} = \frac{{12}}{{\sin {{14}^ \circ }}}\\ \Rightarrow {A_1}D = \sin {35^ \circ }.\frac{{12}}{{\sin {{14}^ \circ }}} \approx 28,45\end{array}\)
Áp dụng định lí sin trong tam giác \({A_1}D{C_1}\) , ta có:
\(\begin{array}{l}\frac{{{A_1}D}}{{\sin {C_1}}} = \frac{{{C_1}D}}{{\sin {A_1}}} \Leftrightarrow \frac{{28,45}}{{\sin {{90}^ \circ }}} = \frac{{{C_1}D}}{{\sin {{49}^ \circ }}}\\ \Rightarrow {C_1}D = \sin {49^ \circ }.\frac{{28,45}}{{\sin {{90}^ \circ }}} \approx 21,47\end{array}\)
Do đó, chiều cao CD của tháp là: \(21,47 + 1,2 = 22,67\;(m)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Kẻ AO vuông góc với BC tại O
=>OC là độ cao của ngọn đồi
\(\widehat{ACO}+\widehat{ACB}=180^0\)
=>\(\widehat{ACB}+65^0=180^0\)
=>\(\widehat{ACB}=115^0\)
Xét ΔACB có \(\widehat{ACO}\) là góc ngoài tại C
nên \(\widehat{ACO}=\widehat{CAB}+\widehat{CBA}\)
=>\(\widehat{CAB}+40^0=65^0\)
=>\(\widehat{CAB}=25^0\)
Xét ΔCAB có
\(\dfrac{BA}{sinACB}=\dfrac{BC}{sinBAC}\)
=>\(\dfrac{BA}{sin115}=\dfrac{130}{sin25}\)
=>\(BA=\dfrac{130}{sin25}\cdot sin115\simeq278,79\left(m\right)\)
Xét ΔBOA vuông tại O có \(cosABO=\dfrac{BO}{BA}\)
=>\(\dfrac{BO}{278.79}=cos40\)
=>\(BO=278,79\cdot cos40\simeq213,57\left(m\right)\)
BO=BC+CO
=>CO+130=213,57
=>CO=83,57(m)
Vậy: Độ cao của ngọn đồi là 83,57 mét
Ta có: AQ = ABcot480
AP = ABcot350
QP = AB(cot350 - cot480)
=> AB =
≈ ![This is the rendered form of the equation. You can not edit this directly. Right click will give you the option to save the image, and in most browsers you can drag the image onto your desktop or another program.](http://img.loigiaihay.com/picture/article/2017/0212/bai-10-trang-60-sgk-hinh-hoc-10_5_1486907361.jpg)
Tính được AB ≈ 568,50m