
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.



Bạn tự phân tích đa thức thành nhân tử nhé!
\(1.\)
\(2x^3+x+3=0\)
\(\Leftrightarrow\) \(\left(x+1\right)\left(2x^2-2x+3\right)=0\) \(\left(1\right)\)
Vì \(2x^2-2x+3=2\left(x^2-x+1\right)+1=2\left(x-\frac{1}{2}\right)^2+\frac{1}{2}>0\) với mọi \(x\in R\)
nên từ \(\left(1\right)\) \(\Rightarrow\) \(x+1=0\) \(\Leftrightarrow\) \(x=-1\)

a/ \(A=\sqrt{6-2\sqrt{5}}-\sqrt{5}\)\(=\sqrt{\left(\sqrt{5}\right)^2-2\sqrt{5}+1^2}-\sqrt{5}\)\(=\sqrt{\left(\sqrt{5}-1\right)^2}-\sqrt{5}\)\(=\sqrt{5}-1-\sqrt{5}\)\(=-1.\)
Bạn kiểm tra lại câu b với c đi, hình như sai đề rồi.

b) Ta có pt \(\Leftrightarrow\sqrt{x-1-4\sqrt{x-1}+4}+\sqrt{x-1-6\sqrt{x-1}+9}=1\)
<=> \(\left|\sqrt{x-1}-2\right|+\left|\sqrt{x-1}-3\right|=1\Leftrightarrow\left|3-\sqrt{x-1}\right|+\left|\sqrt{x-1}-2\right|=1\)
Mà \(\left|3-\sqrt{x-1}\right|+\left|\sqrt{x-1}-2\right|\ge\left|3-\sqrt{x-1}+\sqrt{x-1}-2\right|=1\)
...
a) Đặt \(\sqrt{x^2-4x-5}=a\left(a\ge0\right)\)
Ta có pt \(\Leftrightarrow2a^2-3a-2=0\Leftrightarrow\left(a-2\right)\left(2a+1\right)=0\)
...
Đặt a = \(\sqrt{12-x}\), b = \(\sqrt[3]{24+x}\), ta có:
a + b = 6 => a = 6 - b , (a+b)2 = 36 (1)
Có a2 + b3 = 12 - x + 24 + x = 36 (2)
(1), (2) suy ra (a+b)2 = a2 + b3
<=> a2 + 2ab + b2 = a2 + b3
<=> 2ab + b2 = b3
<=> b3 - b2 - 2ab = 0
<=> b(b2 - b - 2a)=0
Thay a = 6 - b , pt trở thành:
b(b2 - b - 2*6 + 2b) = 0
<=> b(b2 + b - 12) = 0
<=> b(b2 + 4b - 3b -12) = 0
<=> b(b - 3)(b + 4) = 0
<=> b = 0 => x = -24
b = 3 => x = 3
b = -4 => x = -88
Vậy S = {-88;-24;3}
ĐK: \(12-x\ge0\Rightarrow x\le12\)
đặt
\(\hept{\begin{cases}u=\sqrt{12-x}\\v=\sqrt[3]{24+x}\end{cases}}=>\hept{\begin{cases}u^2=12-x\\v^3=24+x\end{cases}}=>\hept{\begin{cases}u^2+v^3=36\left(1\right)\\u+v=6\left(2\right)\end{cases}}\)
từ (2) ta có: \(u=6-v\) thay vào (1) được: \(\left(6-v\right)^2+v^3=36\Leftrightarrow v^3+v^2-12v=0\)
\(\Leftrightarrow v\left(v^2+v-12\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}v=0\\v^2+v-12=0\end{cases}}\Leftrightarrow v=0;v=3;v=-4\)
với \(v=0\Rightarrow u=6\Rightarrow12-x=36\Rightarrow x=-24\)(TM)
với \(v=3\Rightarrow u=3\Rightarrow x=3\left(TM\right)\)
với \(v=-4\Rightarrow u=10\Rightarrow x=-88\left(TM\right)\)
vậy tập nghiệm của PT là S={-24,3,-88}