Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Đặt khi đó yêu cầu bài toán trở thành phương trình
có nghiệm
t
∈
(
0
;
1
]
Có
Do đó
Vậy
Tổng các phần tử của tập S bằng -10.
Chọn đáp án D.

Đặt t = sinx do
● Gọi ∆ 1 là đường thẳng qua điểm (1;-1) và song song với đường thẳng y = 3x nên có phương trình y = 3x - 4
● Gọi ∆ 2 là đường thẳng qua điểm (0;1) và song song với đường thẳng y = 3x nên có phương trình y = 3x+1
Do đó phương trình
f
sin
x
=
3
sin
x
+
m
có nghiệm thuộc khoảng
0
;
π
khi và chỉ khi phương trình f(t) = 3t + m có nghiệm thuộc nửa khoảng Chọn A.

Đáp án C.
Đặt t = sin x , t ∈ − 1 ; 1 . Phương trình đã cho trở thành 2 t + 1 t + 2 = m (*).
Để phương trình đã cho có đúng hai nghiệm thuộc đoạn 0 ; π thì phương trình (*) phải có đúng một nghiệm thuộc nửa khoảng 0 ; 1 .
Xét hàm số f t = 2 t + 1 t + 2 . Ta có f ' t = 3 t + 2 2 .
Bảng biến thiên của :
Vậy để phương trình (*) có đúng một nghiệm thuộc nửa khoảng 0 ; 1 thì m ∈ 1 2 ; 1 . Vậy C là đáp án đúng

\(M>\frac{x}{x+y+z+t}+\frac{y}{x+y+z+t}+\frac{z}{x+y+z+t}+\frac{t}{x+y+z+t}=\frac{x+y+z+t}{x+y+z+t}=1\)
Mà \(\frac{a}{b}<1\) thì \(\frac{a}{b}<\frac{a+m}{b+m}\) ; \(m\in N\)*
Do đó \(M<\frac{x+t}{x+y+z+t}+\frac{y+z}{x+y+z+t}+\frac{z+x}{x+y+z+t}+\frac{t+y}{x+y+z+t}=\frac{2\left(x+y+z+t\right)}{x+y+z+t}=2\)
Vậy 1 < M < 2 nên M không phải là số tự nhiên/
Đáp án A.
Ta có
sin 2 x + 3 cos 2 x = − 2 ⇔ cos 2 x − π 6 = − 2 2 .
⇔ x = − 7 π 24 + k π hoặc x = 11 π 24 + k π , k ∈ ℤ .
Nghiệm thuộc đoạn 0 ; 2 π của phương trình là 11 π 24 ; 17 π 24 ; 35 π 24 ; 41 π 24 .
Suy ra S = 11 π 24 ; 17 π 24 ; 35 π 24 ; 41 π 24 .
Do đó tổng các phần tử thuộc S là
11 π 24 + 17 π 24 + 35 π 24 + 41 π 24 = 104 24 π + 13 3 π
Ta có m=13 và n=3 nên T=2322.