Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Hình tự vẽ
a) Ta có :
AG = GD . Mà GM = \(\frac{1}{2}\) AG
=> GD = \(\frac{1}{2}\) AG
Do AG = \(\frac{1}{3}\) AM
=> GD = \(\frac{2}{3}\) AM (*)
Xét tứ giác GBDC ta có:
BM = MC ( gt ) (1)
GM= MD ( do GD = \(\frac{1}{2}\) AG ) (2)
Từ (1)(2) => Tứ giác GBDC là hình bình hành
=> GC// và =BD ; BG // và =DC
Xét tam giác ABD ta có:
AP = P B ( gt ) ( 3)
AG = GD ( gt ) (4)
Từ (3)(4) => PG là đường trung bình của tam giác ABD
=> PG = \(\frac{1}{2}\)BD .Do BD = GC => PG=\(\frac{1}{2}\)GC
Mà PG = \(\frac{1}{3}\)PC => GC =\(\frac{2}{3}\)PC(**)
Chứng mình tương tự . Xét tam giác ADC ( làm tường tự cái trên nha )
=> NG=\(\frac{2}{3}\)BN (***)
Từ (*)(**)(***) => Đpcm
b) Xét tam giác DBA ta có :
AG = GD ( gt )
BF=FD ( gt )
=> GF là đường trung bình bình của tam giác DAB
=> GF = \(\frac{1}{2}\)AB( 5)
Ta có : DC = GB ( cm ở câu a )
Do BE = EG ; BG =\(\frac{2}{3}\)BN ( cm ở câu a)
=> EN = BG => EN= DC
Mà BG// DC ( cm ở câu a)
=> tứ giác ENCD là hình bình hành ( 1 cặp cạnh // và bằng nha )
=> DE=NC
Mà NC =\(\frac{1}{2}\)AC (6)
=> AN= NC
Ta lại có BM=MC ( gt) => BI=\(\frac{1}{2}\)BC (7)
Từ (5)(6)(7) => Đpcm
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Do G là trọng tâm của tam giác ABC nên :
\(\dfrac{BG}{BN}=\dfrac{2}{3};\dfrac{GM}{AG}=\dfrac{1}{2}\)Do G là trung điểm của AD NÊN\(\dfrac{GD}{AG}=1\)
\(\Rightarrow GM=MG\) . \(\Rightarrow\dfrac{GD}{AG}=\dfrac{2}{3}\)
Tự cm \(\Delta BMD=\Delta CMG\left(c-g-c\right)\)
=> \(GC=BD\) Mà \(\dfrac{GC}{QC}=\dfrac{2}{3}\) \(\Rightarrow\dfrac{BD}{QC}=\dfrac{2}{3}\)
Vậy \(\dfrac{BG}{BN}=\dfrac{2}{3};\dfrac{BD}{QC}=\dfrac{2}{3};\dfrac{GD}{AG}=\dfrac{2}{3}\)
b) ta có luôn \(BM=\dfrac{1}{2}BC\left(gt\right)\)
Tự chứng minh KG là đường trung bình của Tam giác ABD
=> \(KG=\dfrac{AB}{2}\)
HN = BG = DC ; HN // CD (tự chứng minh ) => \(HD=NC=\dfrac{1}{2}AC\)
Vậy .......
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Theo định lí pytago vào tam giác ABC:
BC2=AB2+AC2
=>BC^2=9^2+12^2
=>BC^2=81+144
=>BC^2=225
=>BC^2=căn 225=15 cm.(theo giả thiết cho cũng bằng 15 cm)
Vậy tam giác ABC vuông tại A
b) Vì MH=MK mà MH vuông góc với AC, MK là tia đối của MH nên tam giác KMB vuông tại K
Xét 2 tam giác MHC và MKB có:
MH = MK theo giả thiết
MB = MC vì AM là trung tuyến ứng với với BC
góc H = góc K = 90 độ
=> 2 tam giác trên bằng nhau.(cạnh huyền-cạnh góc vuông)
=> góc KMB = góc HMC.
Mặt khác, hai góc KMB và HMC ở vị trí so le trong nên BK//HC hay BK//AC.(còn một cách cm nữa)
c) Xét hai tam giác vuông MHA và MHC có:
MH chung
MA=MC vì AM là trung tuyến ứng với BC
góc MHA = góc MHC = 90 độ
=> tam giác MHA = tam giác MHC. (cạnh huyền - cạnh góc vuông)
=> HA=HC
=> H là trung điểm của BC
=> BH là trung tuyến ứng với AC
Vì AM, BC là các trung tuyến mà hai trung tuyến này(AM, BC) cắt tại G nên G là trọng tâm của tam giác ABC
a) So sánh các cạnh của ∆BGG’ với các đường trung tuyến của ∆ABC BG cắt AC tại N
CG cắt AB tại E
G là trọng tâm của ∆ABC
=> GA =
AM
Mà GA = GG’ ( G là trung điểm của AG ‘)
GG'=
AM
Vì G là trọng tâm của ∆ABC => GB =
BN
Mặt khác : GM =
AG ( G là trọng tâm )
AG = GG '(gt)
GM =
GG '
M là trung điểm GG’
Do đó ∆GMC = ∆G’MB vì :
GM = GM '
MB = MC
=> BG '= CG
mà CG =
CE (G là trọng tâm ∆ABC)
=> BG =
EC
Vậy mỗi cạnh của ∆BGG' bằng
đường trung tuyến của ∆ABC
b) So sánh các đường trung tuyến của ∆BGG' với cạnh ∆ABC
ta có: BM là đường trung tuyến ∆BGG'
mà M là trung điểm của BC nên BM =
BC
Vì IG =
BG (I là trung điểm BG)
GN =
BG ( G là trọng tâm)
=> IG = GN
Do đó ΔIGG '= ΔNGA (cgc) => IG' = AN => IG '=![Đây là hình thức trả về phương trình. Bạn không thể chỉnh sửa trực tiếp. Nhấp chuột phải sẽ cung cấp cho bạn tùy chọn để lưu hình ảnh, và trong hầu hết các trình duyệt bạn có thể kéo hình ảnh lên desktop hoặc chương trình khác.](http://img.loigiaihay.com/picture/article/2017/0209/bai-30-trang-67-sgk-toan-lop-7-tap-2_14_1486633327.jpg)
- Gọi K là trung điểm BG => GK là trung tuyến ∆BGG'
Vì GE =
GC (G là trọng tâm ∆ABC)
=> GE =
BG
mà K là trung điểm BG' => KG' = EG
Vì ∆GMC = ∆G'BM (chứng minh trên)
=>
(lại góc sole trong)
=> CE // BG' =>
(đồng vị)
Làm Độ ΔAGE = ΔGG'K (CGC) => AE = GK
mà AE =
AB nên GK =
AB
Vậy mỗi đường trung tuyến ∆BGG' bằng một nửa cạnh của tam giác ABC song song với nó