Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(A=\frac{3x-1}{x-1}=\frac{3\left(x-1\right)+2}{x-1}=3+\frac{2}{x-1}\)
\(B=\frac{2x^2+x-1}{x+2}=\frac{\left(x+2\right)\left(2x-3\right)+5}{x+2}=2x-3+\frac{5}{x+2}\)
Để A,B đều là số nguyên thì \(x-1\in\left\{1;2;-1;-2\right\}\) và \(x+2\in\left\{1;5;-1;-5\right\}\)
Bạn tự làm nốt

a) P(x) có nghiệm x = 0
<=> 4.0+a=0
<=> 0+a=0
<=> a=0
b) P(x) có nghiệm x = -2
<=> 4.(-2)+a=0
<=> -8+a=0
<=> a=8
c) P(x) có nghiệm x = \(\frac{-1}{2}\)
<=> \(\frac{-1}{2}\).4 +a=0
<=> -2+a=0
<=> a=2
Chúc bạn học tốt nhá!

làm câu b , bài 1 nhé
A =(ghi lại )
=> 2A=2+22+23+24+....+2100+2101
=> 2A - A = A = 2+22+23+24+....+2100+2101 -1 -2-22-23-....-2100
=>A = 2101-1 < 2101
Vậy A < B
Bài 1:
a) \(\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+...+\frac{19}{9^2.10^2}\)
\(=\frac{3}{1.4}+\frac{5}{4.9}+...+\frac{19}{81.100}\)
\(=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{9}+...+\frac{1}{81}-\frac{1}{100}\)
\(=1-\frac{1}{100}< 1\)
\(\Rightarrow\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+...+\frac{19}{9^2.10^2}< 1\left(đpcm\right)\)
b) Ta có: \(A=2^0+2^1+...+2^{100}\)
\(\Rightarrow2A=2+2^2+...+2^{101}\)
\(\Rightarrow2A-A=2^{101}-2^0\)
\(\Rightarrow A=2^{201}-1< 2^{101}\)
\(\Rightarrow A< B\)
Vậy A < B

Câu 3:
Theo đề, ta có hệ phương trình:
\(\left\{{}\begin{matrix}2\cdot1+a+4=4-10-b\\2-a+4=25-25-b\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a+b=-6-4-2=-12\\-a+b=-6\end{matrix}\right.\)
=>a=-3; b=-9

a)f(0) = 02 - 4.0 + 3= 0 - 0 + 3 = 3
f(1) = 12 - 4.1 +3 = 1 - 4 +3 = 0
f(-1) = (-1)2 - 4.(-1) +3 = 1 - (-4) +3 = 8
f(3)= 32 - 4.3 +3 = 9 - 12 + 3 = 0
vậy giá trị 1 và 3 là nghiệm của đa thức f(x)
b)thay x = -1 vào đa thức N(x) ta được:
N(x) = a. (-1)3 - 2a.(-1) - 3 = 0
\(\Leftrightarrow\) a. (-1) - 2a.(-1) = 3
\(\Leftrightarrow\) (- a) + 2a = 3 \(\Rightarrow\) a = 3

Hướng dẫn:
a, Bạn thay xem số nào thì f(x) = 0 thì số đó là nghiệm
hoặc có thể tìm x với f(x) = 0 rồi chọn số
b, thay x = -1 là nghiệm của N(x) ta có:
\(-a+2a-3=0\Rightarrow a=3\)
Vậy a = 3
a)f(0)=02-4.0+3=0-0+3=3
f(1)=12-4.1+3=1-4+3=0
f(-1)=(-1)2-4.(-1)+3=1+4+3=8
f(3)=32-4.3+3=9-12+3=0
b)
a.(-1)3-2a.(-1)-3=0
-a+2a-3=0
a-3=0
a=3

- Cho đa thức P(x) = x^2 − 5x − 2 có hai nghiệm là a và b. Tính các biểu thức:
- a + b:
Theo định lý Viet, ta có tổng hai nghiệm của phương trình bậc hai:
a + b = - (hệ số của x) / (hệ số của x^2) = - (-5) / 1 = 5
- a^2 + b^2:
Sử dụng công thức (a + b)^2 = a^2 + b^2 + 2ab, ta có:
a^2 + b^2 = (a + b)^2 - 2ab
Ta biết a + b = 5 và tích hai nghiệm ab = - (hệ số tự do) / (hệ số của x^2) = - (-2) / 1 = 2
a^2 + b^2 = 5^2 - 2 * 2 = 25 - 4 = 21
- a^3 + b^3:
Sử dụng công thức a^3 + b^3 = (a + b)(a^2 - ab + b^2), ta có:
a^3 + b^3 = 5 * (21 - 2) = 5 * 19 = 95
- a^5 + b^5:
Sử dụng công thức a^5 + b^5 = (a + b)(a^4 - a^3b + a2b2 - ab^3 + b^4), ta có:
a^5 + b^5 = 5 * [(a^2 + b2)2 - ab(a^3 + b^3)]
a^5 + b^5 = 5 * [21^2 - 2 * 95]
a^5 + b^5 = 5 * [441 - 190]
a^5 + b^5 = 5 * 251 = 1255
- a^2 + 2a + b^2 + 2b:
Ta có:
a^2 + b^2 = 21
Và:
2a + 2b = 2 * 5 = 10
Nên:
a^2 + 2a + b^2 + 2b = 21 + 10 = 31
Tiếp theo là bài toán thứ hai:
- Cho đa thức P(x) = 2x^2 − 3x − 1 có 2 nghiệm là a và b. Tính:
- 1/(1-a) + 1/(1-b):
Biểu thức này có thể được đơn giản hóa như sau:
1/(1-a) + 1/(1-b) = (1 - b + 1 - a) / ((1 - a)(1 - b))
Chúng ta biết:
(1 - a)(1 - b) = 1 - (a + b) + ab
Sử dụng định lý Viet, ta biết:
a + b = - (hệ số của x) / (hệ số của x^2) = 3 / 2
ab = - (hệ số tự do) / (hệ số của x^2) = 1 / 2
Nên:
(1 - a)(1 - b) = 1 - 3/2 + 1/2 = 0
Vì vậy biểu thức 1/(1-a) + 1/(1-b) không xác định do mẫu số bằng 0.
cho đa thức P(x) = 2ax + a - 6. Tìm a để P(x) có nghiệm là :
a, tại x=1 , ta có:
2a+a-6=0=> a=6
b. Tại x=-5, ta có:
-10a+a-6=0
=> 9a=-6
=> a=-2/3
c. Tại x=-1/2, ta có:
-a+a-6=0 (Không thỏa ĐK)=> không tìm được a để PT có nghiệm x=-1/2
a) P(x) có nghiệm x=1
<=> 2.a.1 + a -6=0
<=>2a+a-6=0
<=>3a=6
<=>a=2
b)
P(x) có nghiệm x=-5
<=> 2.a.(-5) + a -6=0
<=>-10a+a-6=0
<=>-9a=6
<=>a= \(\frac{2}{-3}\)
c) P(x) có nghiệm x=\(\frac{-1}{2}\)
<=> 2.a.(\(\frac{-1}{2}\) )+ a -6=0
<=>-a+a-6=0
<=>0a=6
<=>a vô nghiệm
Chúc bạn học tốt ạ!