Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

∠ (AMO) = 90 ° . Điểm M chuyển động trên đường tròn (O’) đường kính AO.

a: \(\widehat{AMO}=90^0\)
nên điểm M chuyển động trên đường tròn đường kính AO
b: Đường tròn (O') tiếp xúc trong với đường tròn (O)

Phần thuận: giả sử M là trung điểm của dây AB. Ta có OM ⊥ AB (định lí)
Khi B di động trên (O), điểm M luôn nhình OA cố định dưới góc vuông , vậy M thuộc đường tròn đường kính OA.
Phần đảo: lấy điểm M' bất kì trên đường tròn đường kính OA.
Nối M' với A, đường thẳng M'A cắt đường tròn (O) tại B'. Nối M' với O ta có

Phần thuận: giả sử M là trung điểm của dây AB. Ta có OM ⊥ AB (định lí)
Khi B di động trên (O), điểm M luôn nhình OA cố định dưới góc vuông , vậy M thuộc đường tròn đường kính OA.
Phần đảo: lấy điểm M' bất kì trên đường tròn đường kính OA.
Nối M' với A, đường thẳng M'A cắt đường tròn (O) tại B'. Nối M' với O ta có
Hay OM' ⊥ AB'
⇒ M' là trung điểm của AB'
Kết luận: Tập hợp các trung điểm của dây AB là đường tròn đường kính OA.

Phần thuận: giả sử M là trung điểm của dây AB. Ta có OM ⊥ AB (định lí)
Khi B di động trên (O), điểm M luôn nhình OA cố định dưới góc vuông , vậy M thuộc đường tròn đường kính OA.
Phần đảo: lấy điểm M' bất kì trên đường tròn đường kính OA.
Nối M' với A, đường thẳng M'A cắt đường tròn (O) tại B'. Nối M' với O ta có
Hay OM' ⊥ AB'
⇒ M' là trung điểm của AB'
Kết luận: Tập hợp các trung điểm của dây AB là đường tròn đường kính OA.