Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1) \(f\left(x\right)=ax^{2\:}+bx+6\)có bậc 1 => a=0
Khi đó \(f\left(x\right)=bx+6;f\left(1\right)=3\)
\(\Rightarrow b\cdot1+6=3\Rightarrow b=-3\)
2) \(g\left(x\right)=\left(a-1\right)\cdot x^2+2x+b\)
g(x) có bậc 1 => a-1=0 => a=1. Khi đó
\(g\left(x\right)=2x+b\)lại có g(2)=1
\(\Rightarrow2\cdot2+b=1\Rightarrow b=-3\)
3) \(h\left(x\right)=5x^3-7x^2+8x-b-ax^{3\: }=x^3\left(5-a\right)-7x^2+8x-b\)
h(x) có bậc 2 => 5-a=0 => a=5
Khi đó h(x)=-7x2+8x-b
h(-1)=3 => -7(-1)2+8.(-1)+b=3
<=> -7-8+b=3 => b=18
4) r(x)=(a-1)x3+5x3-4x2+bx-1=(a-1+5)x3-4x2+bx-1=(a+4)x3-4x2+bx-1
r(x) bậc 2 => a+4=0 => a=-4
r(2)=5 => (-4).22+b.2-1=5
<=> -16+2b-1=5
<=> 2b=22 => b=11

1.a) Theo đề bài,ta có: \(f\left(-1\right)=1\Rightarrow-a+b=1\)
và \(f\left(1\right)=-1\Rightarrow a+b=-1\)
Cộng theo vế suy ra: \(2b=0\Rightarrow b=0\)
Khi đó: \(f\left(-1\right)=1=-a\Rightarrow a=-1\)
Suy ra \(ax+b=-x+b\)
Vậy ...

a/ \(M=\left(-2x^4+x^2+5\right)-\left(5x^2-x^3+4x\right)\)
\(=-2x^4+x^2+5-5x^2+x^3-4x\)
\(=-2x^4+x^3-4x^2-4x+5\)
Vậy...
b/ \(M=-2x^4+x^2+5+5x^2-x^3+4x\)
\(=-2x^4-x^4+6x^2+4x+5\)
Vậy...
c/ \(M=\left(5x^2-x^3+4x\right)-\left(-2x^4+x^2+5\right)\)
\(=5x^2-x^3+4x+2x^4-x^2-5\)
\(=2x^4-x^3+4x^2-5\)
Vậy...
d/ \(M=-\left(5x^2-x^3+4x\right)\)
\(=x^4-5x^2-4x\)
Vậy..

1. Thay x = -2 vào \(f\left(x\right)\), ta có:
\(\left(-2\right)^3+2.\left(-2\right)^2+a.\left(-2\right)+1=\)0
=> -8 + 8 - 2a + 1 = 0
=> -2a +1 = 0
=> -2a = -1
=> a = \(\frac{1}{2}\)
Vậy a = \(\frac{1}{2}\)
2. * Thay x = 1 vào \(f\left(x\right)\), ta có:
12 + 1.a + b = 1 + a + b = 0 ( 1)
* Thay x = 2 vào biểu thức \(f\left(x\right)\), ta có:
22 + 2.a + b = 4 + 2a + b = 0 ( 2)
* Lấy (2 ) - ( 1) , ta có:
( 4 + 2a + b ) - ( 1 + a + b ) = 3 + a
=> 3 + a = 0
=> a = -3
* 1 + a + b = 0
=> 1 - 3 + b = 0
=> b = -1 + 3 = -2
Vậy a= -3 và b= -2

Bài 1:
\(M\left(1\right)=a+b+6\)
Mà \(M\left(1\right)=0\)
\(\Rightarrow a+b+6=0\)
\(\Rightarrow a+b=-6\)( * )
\(\Rightarrow2a+2b=-12\) (1)
Ta có: \(M\left(-2\right)=4a-2b+6\)
Mà \(M\left(-2\right)=0\)
\(\Rightarrow4a-2b=-6\)(2)
Lấy (1) cộng (2) ta được:
\(6a=-18\)
\(a=-3\)
Thay a=-3 vào (* ) ta được:
\(b=-3\)
Vậy a=-3 ; b=-3
Bài 2:
a) \(\frac{5}{x}+\frac{y}{4}=\frac{1}{8}\)
\(\Leftrightarrow\frac{1}{8}-\frac{y}{4}=\frac{5}{x}\)
\(\Leftrightarrow\frac{1}{8}-\frac{2y}{8}=\frac{5}{x}\)
\(\Leftrightarrow\frac{1-2y}{8}=\frac{5}{x}\)
\(\Leftrightarrow\left(1-2y\right).x=5.8\)
\(\Leftrightarrow\left(1-2y\right).x=40\)
Vì \(x,y\in Z\Rightarrow1-2y\in Z\)
mà \(40=1.40=40.1=5.8=8.5=\left(-1\right).\left(-40\right)=\left(-40\right).\left(-1\right)=\left(-5\right).\left(-8\right)=\left(-8\right).\left(-5\right)\)
Thử từng TH
\(a=0\)
a là hệ số
P(x) có bậc 4