Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a, Xét tam giác ABM và tam giác ACM có
AB=AC(gt)
BM=CM(gt)
^ABC=^ACB(gt)
=> tam giác ABM= tam giác ACM(c-g-c)
=> ^AMB=^AMC(2 g tương ứng)
=> ^AMB=^AMC=180 độ /2 =90 độ
hay AM vuông góc vs BC
b, Ta có: BM=MC=1/2 BC=5
Áp dụng đly pitago vào tam giác vuông ABM có:
AM^2=AB^2-BM^2=13^2-5^2=144
=> AM=12

A B C M 1 2 Q G
A) XÉT \(\Delta ABM\)VÀ\(\Delta ACM\)CÓ
\(AB=AC\left(GT\right)\)
\(\widehat{A_1}=\widehat{A_2}\left(GT\right)\)
AM LÀ CẠNH CHUNG
=>\(\Delta ABM\)=\(\Delta ACM\)( C-G-C)
TRONG TAM GIÁC CÂN TIA PHÂN GIÁC CŨNG LÀ ĐƯỜNG CAO
=> AM LÀ ĐƯỜNG CAO CỦA \(\Delta ABC\)
\(\Rightarrow AM\perp BC\)
B) TRONG TAM GIÁC CÂN TIA PHÂN GIÁC CŨNG LÀ TRUNG TUYẾN
=> AM LÀ TRUNG TUYẾN THỨ NHẤT CỦA \(\Delta ABC\)
MÀ BG LÀ ĐƯỜNG TRUNG TUYẾN THỨ HAI CỦA \(\Delta ABC\)
HAI ĐƯỜNG TRUNG TUYẾN NÀY CẮT NHAU TẠI G
\(\Rightarrow G\)LÀ TRỌNG TÂM CỦA \(\Delta ABC\)

a)Xét tam giác AMB và tam giác AMC
ta có: góc AMB=góc AMC (AM là tia phân giác)
AM là cạnh chung góc B=gócC
Vậy tam giác AMB=tam giácAMC(G-C-G)
A 1 2 B C M H I K 2 1
Cm: a) Xét t/giác AMB và t/giác AMC
có góc A1 = góc A2 (gt)
AB = AC (gt)
góc B = góc C (Vì t/giác ABC cân tại A)
=> t/giác AMB = t/giác AMC (g.c.g)
b) Ta có: t/giác AMB = t/giác AMC (cmt)
=> góc M1 = góc M2 (hai góc tương ứng) ( Đpcm)
Mà góc M1 + góc M2 = 1800 (kề bù)
hay 2.góc M1 = 1800
=> góc M1 = 1800 : 2
=> góc M1 = 900
=> AM \(\perp\)BC( Đpcm)
c) Ta có: t/giác AMB = t/giác AMC (cmt)
=> BM = MC = BC/2 = 6/2 = 3 (cm)
Xét t/giác ABM vuông tại M (áp dụng đính lý Pi - ta - go)
Ta có: AB2 = AM2 + MB2
=> AM2 = AB2 - MB2 = 52 - 32 = 25 - 9 = 16
=> AM = 4
d) Gọi I là giao điểm của BH và AC; K là giao điểm của CH và AB
còn lại tự làm
xét tam giác ABM và ACM có :
AB=AC ( tam giác ABC cân tại A )
AM là cạnh chung (gt)
BM=MC (AM là trung tuyến của tam giác ABC )
=> Tam giác ABM = tam giác ACM (c-c-c)
=> góc BAM = góc MAC (2-g-t-ứ)
=> AM là tia phân giác của gócA
b) vì tam giác ABM= tam giác ACM (cmt)
=> góc AMB= góc AMC (2-g-t-ứ)
mà góc AMB+ góc AMC = 180 độ (kề bù )
=> góc AMB = góc AMC = góc BMC/2 =90 độ
=> AM vuông góc vs BC