K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét tứ giác AEMF có \(\hat{AEM}=\hat{AFM}=\hat{FAE}=90^0\)

nên AEMF là hình chữ nhật

=>EF=AM

b: Gọi O là giao điểm của AM và EF

AEMF là hình chữ nhật

=>AM cắt EF tại trung điểm của mỗi đường

=>O là trung điểm chung của AM và EF

=>\(OA=OM=\frac{AM}{2};OE=OF=\frac{EF}{2}\)

mà AM=EF

nên \(OA=OM=OE=OF=\frac{AM}{2}=\frac{EF}{2}\)

ΔAHM vuông tại H

mà HO là đường trung tuyến

nên \(HO=\frac{AM}{2}=\frac{EF}{2}\)

Xét ΔHEF có

HO là đường trung tuyến

\(HO=\frac{FE}{2}\)

Do đó: ΔHEF vuông tại H

=>HE⊥HF

a: Xét tứ giác AEMD có \(\hat{AEM}=\hat{ADM}=\hat{DAE}=90^0\)

nên AEMD là hình chữ nhật

=>AM=DE

b: Ta có: AEMD là hình chữ nhật

=>MD//AE
=>MD//AC

Ta có: AEMD là hình chữ nhật

=>ME//AD

=>ME//AB

Xét ΔABC có

M là trung điểm của BC

ME//AB

Do đó:E là trung điểm của AC

Xét ΔABC có

M là trung điểm của BC

MD//AC

Do đó: D là trung điểm của AB

ta có: ADME là hình chữ nhật

=>MD=AE

mà AE=EC

nên MD=EC

Xét tứ giác MDEC có

MD//EC

MD=EC

Do đó: MDEC là hình bình hành

c: Xét ΔABC có

D,E lần lượt là trung điểm của AB,AC

=>DE là đường trung bình của ΔABC

=>DE//BC

=>DE//MH

ΔAHC vuông tại H

mà HE là đường trung tuyến

nên EH=EA

mà EA=MD

nên EH=MD

Xét tứ giác MHDE có

MH//DE

MD=HE

Do đó: MHDE là hình thang cân

20 tháng 12 2016

Câu c có sai k v bạn??

20 tháng 12 2016

a) Xét tứ giác ABCD có:

. M là trung điểm của BC ( AM là đường trung tuyến)

. M là tđ của AD ( gt)

Vậy: ABCD là hbh ( tứ giác có 2 đường chéo cắt nhau tại tđ của mỗi đường)

\(\widehat{BAC}\) = 900 ( \(\Delta\) ABC vuông tại A)

--> ABCD là hình chữ nhật ( hbh có 1 góc vuông)

b) Ta có: \(IA\perp AC\)

\(CD\perp AC\)

\(\Rightarrow\) IA // CD

Xét tứ giác BIDC có:

. IA // CD (cmt)

\(\Rightarrow\) IB // CD ( B ϵ IA )

. AB =CD ( cạnh đối hcn ABCD )

mà AB = IB ( tính chất đối xứng)

\(\Rightarrow\) IB = CD ( cùng = AB )

Vậy: BIDC là hbh ( tứ giác có 2 cạnh đối vừa //, vừa = nhau)

\(\Rightarrow\) BC // ID ( cạnh đối hbh)

" đề câu c sai nha bạn"

Cách 1: MI//DF

BD⊥FD

Do đó: MI⊥BD

Ta có: MI//DF
=>\(\hat{IMB}=\hat{ACB}\) (hai góc đồng vị)

\(\hat{ABC}=\hat{ACB}\) (ΔABC cân tại A)

nên \(\hat{EBM}=\hat{IMB}\)

Xét ΔEBM vuông tại E và ΔIMB vuông tại I có

MB chung

\(\hat{EBM}=\hat{IMB}\)

Do đó: ΔEBM=ΔIMB

=>BI=EM; EB=MI

Xét tứ giác IDFM có

ID//MF

IM//DF

Do đó: IDFM là hình bình hành

=>MF=ID

MF+ME=IB+ID=BD ko đổi

Cách 2:

Ta có: BD⊥AC
MF⊥AC

Do đó: BD//MF

=>ID//MF

Xét tứ giác IDFM có

ID//FM

ID=MF

Do đó: IDFM là hình bình hành

=>IM//DF
mà DF⊥BD

nên IM⊥BD tại I

Xét ΔEBM vuông tại E và ΔIMB vuông tại I có

MB chung

\(\hat{EBM}=\hat{IMB}\left(=\hat{ACB}\right)\)

Do đó: ΔEBM=ΔIMB

=>EM=BI

EM+MF

=BI+ID

=BD không đổi

13 tháng 9

BD⊥FD

Do đó: MI⊥BD

Ta có: MI//DF
=>\(\hat{I M B} = \hat{A C B}\) (hai góc đồng vị)

mà \(\hat{A B C} = \hat{A C B}\) (ΔABC cân tại A)

nên \(\hat{E B M} = \hat{I M B}\)

Xét ΔEBM vuông tại E và ΔIMB vuông tại I có

MB chung

\(\hat{E B M} = \hat{I M B}\)

Do đó: ΔEBM=ΔIMB

=>BI=EM; EB=MI

Xét tứ giác IDFM có

ID//MF

IM//DF

Do đó: IDFM là hình bình hành

=>MF=ID

MF+ME=IB+ID=BD không đổi.

CHÚC BẠN HỌC TỐT!!! ^^

a: Xét tứ giác AMDN có góc AMD=góc AND=góc MAN=90 độ

nên AMDN là hình chữ nhật

Suy ra: AD=MN

b: Xét tứ giác AMHD có góc AMD=góc AHD=90 độ

nên AMHD là tứ giác nội tiếp

=>A,M,H,D cùng thuộc 1 đường tròn (1)

Xét tứ giác AMDN có góc AMD+góc AND=180 độ

nên AMDN là tứ giác nội tiếp

=>A,M,D,N cùng thuộc 1 đường tròn(2)

Từ (1) và (2) suy ra A,M,H,D,N cùg thuộc 1 đường tròn

=>AMHN là tứ giác nội tiếp

=>góc AHM=90 độ

a: Xét tứ giác AMDN có góc AMD=góc AND=góc MAN=90 độ

nên AMDN là hình chữ nhật

Suy ra: AD=MN

b: Xét tứ giác AMHD có góc AMD=góc AHD=90 độ

nên AMHD là tứ giác nội tiếp

=>A,M,H,D cùng thuộc 1 đường tròn (1)

Xét tứ giác AMDN có góc AMD+góc AND=180 độ

nên AMDN là tứ giác nội tiếp

=>A,M,D,N cùng thuộc 1 đường tròn(2)

Từ (1) và (2) suy ra A,M,H,D,N cùg thuộc 1 đường tròn

=>AMHN là tứ giác nội tiếp

=>góc AHM=90 độ

Bai 1 : Cho hình bình hành ABCD ; góc BAD = 120 độ ; AB = 2 AD a) CMR: Tia phân giác của góc ADC đi qua trung điểm E của AB .b) Gọi F là trung điểm DC . CMR tam giác ADF đều và AD vuông góc với ACBài 2: Cho hình bình hành ABCD có BC = 2AB . Gọi M là trung điểm AD. Kẻ CE vuông góc với AB ; E nằm giữa A và B . CMR:              góc EMD = 3 góc AEMBìa 3: Cho tam giác ABC vuông tại A . Đường cao AH . Từ H kẻ HE , HF...
Đọc tiếp

Bai 1 : Cho hình bình hành ABCD ; góc BAD = 120 độ ; AB = 2 AD 
a) CMR: Tia phân giác của góc ADC đi qua trung điểm E của AB .
b) Gọi F là trung điểm DC . CMR tam giác ADF đều và AD vuông góc với AC

Bài 2: Cho hình bình hành ABCD có BC = 2AB . Gọi M là trung điểm AD. Kẻ CE vuông góc với AB ; E nằm giữa A và B . CMR:              góc EMD = 3 góc AEM

Bìa 3: Cho tam giác ABC vuông tại A . Đường cao AH . Từ H kẻ HE , HF vuông góc với AB và AC . Kẻ AI vuông góc với EF ( I \(\in\)BC). CMR: a) I là trung điểm BC 
          b) Cho tam giác ABC vuông tại A. Đường cao AH. Gọi E, F lần lượt là các hình chiếu của H xuống AB, AC. Gọi I là trung điểm của BC. CMR: AI vuông góc với EF.

Bài 4: Cho tam giác ABC cân tại A . D bất kì thuộc BC . Qua D kẻ đường thẳng vuông góc với BC cắt AB và AC lần lượt tại E,F . Gọi I,K lần lượt là trung điểm của BE và CF .
a) CMR: AKDI là hình bình hành 
b) Nêu thêm điều kiện của tam giác ABC và của điểm D để DIAK là hình vuông

0