K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 5 2016

Bài a:14 đồng dư với -1 (mod 13)

=>1414 đồng dư với (-1)14(mod 13)

=>1414 đồng dư với 1(mod 13)

=>1414-1 đồng dư với 0(mod 13)

=>1414-1 chia hết cho 13(đpcm)

Các bài sau tương tự

3 tháng 5 2016
mod là gì
19 tháng 2 2017

xét \(A=1+14+14^2+14^3+...+14^{13}\) (*)

Tính tổng trên có \(A=\frac{14^{14}-1}{13}\) (**)

(*) hiển nhiên A là tỏng của các số tự nhiên do vậy phải tự nhiên

(**) \(A\in N\Rightarrow14^{14}-1⋮13\) +> dpcm

p/s: để tính tổng (*) có lẽ bạn biết rồi

19 tháng 4 2020

Bạn tham khảo

http://pitago.vn/question/a-chung-minh-rang-1414-1-chia-het-cho-3bchung-minh-rang-58984.html

Trường học Toán Pitago – Hướng dẫn Giải toán – Hỏi toán - Học toán lớp 3,4,5,6,7,8,9 - Học toán trên mạng - Học toán online

19 tháng 4 2020

giải luôn hộ mình

8 tháng 12 2015

Mấy cái bạn này dễ thì làm đi, đừng có mà nói khoác, bạn anh ak mk ko biết nên ko giúp đc, tuy cũng lớp 6...

6 tháng 12 2015

a giải luôn cho e nhé

7A=7+72+73+...+72008

7A-A=[7+72+73+...+72008]-[1+7+72+..+72007]

6A=72008-1

A=72008-1/6

b,Tương tư nhân B vs 4 là ra

6 tháng 12 2015

Mình chỉ trả lời được 2 câu đầu thôi nhé:

a.A= \(1+7+7^2+7^3+...+7^{2007}\)

A.7 = \(7+7^2+7^3+7^4+...+7^{2008}\)

A7-A = \(\left(7+7^2+7^3+7^4+...+7^{2008}\right)-\left(1+7+7^2+7^3+...+7^{2007}\right)\)

A6 =\(7^{2008}-1\)

\(\Rightarrow A=7^{2008}-1\)

Câu còn lại làm tương tự bạn nhé

b: \(B=\left(1+7\right)+7^2\left(1+7\right)+...+7^{100}\left(1+7\right)\)

\(=8\cdot\left(1+7^2+...+7^{100}\right)⋮8\)

c: \(C=4^{39}\left(1+4+4^2\right)=4^{39}\cdot21=4^{38}\cdot84⋮28\)

2 tháng 11 2016

Bài 2:

\(x^5=x^3\)

\(\Rightarrow x^5-x^3=0\)

\(\Rightarrow x^3\left(x^2-1\right)=0\)

\(\Rightarrow x^3=0\) hoặc \(x^2-1=0\)

+) \(x^3=0\Rightarrow x=0\)

+) \(x^2-1=0\Rightarrow x^2=1\Rightarrow x=1\) hoặc \(x=-1\)

Vậy \(x\in\left\{0;1;-1\right\}\)

2 tháng 11 2016

mình chả hiểu