Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Mẫu số chứa các biểu thức có nghiệm thực và không có nghiệm thực.
\(f\left(x\right)=\frac{x^2+2x-1}{\left(x-1\right)\left(x^2+1\right)}=\frac{A}{x-1}+\frac{Bx+C}{x^2+1}=\frac{A\left(x^2+1\right)+\left(x-1\right)\left(Bx+C\right)}{\left(x-1\right)\left(x^2+1\right)}\left(1\right)\)
Tay x=1 vào 2 tử, ta có : 2=2A, vậy A=1
Do đó (1) trở thành :
\(\frac{1\left(x^2+1\right)+\left(x-1\right)\left(Bx+C\right)}{\left(x-1\right)\left(x^2+1\right)}=\frac{\left(B+1\right)x^2+\left(C-B\right)x+1-C}{\left(x-1\right)\left(x^2+1\right)}\)
Đồng nhất hệ số hai tử số, ta có hệ :
\(\begin{cases}B+1=1\\C-B=2\\1-C=-1\end{cases}\)\(\Leftrightarrow\)\(\begin{cases}B=0\\C=2\\A=1\end{cases}\)\(\Rightarrow\)
\(f\left(x\right)=\frac{1}{x-1}+\frac{2}{x^2+1}\)
Vậy :
\(f\left(x\right)=\frac{x^2+2x-1}{\left(x-1\right)\left(x^2+1\right)}dx=\int\frac{1}{x-1}dx+2\int\frac{1}{x^2+1}=\ln\left|x+1\right|+2J+C\left(2\right)\)
* Tính \(J=\int\frac{1}{x^2+1}dx.\)
Đặt \(\begin{cases}x=\tan t\rightarrow dx=\left(1+\tan^2t\right)dt\\1+x^2=1+\tan^2t\end{cases}\)
Cho nên :
\(\int\frac{1}{x^2+1}dx=\int\frac{1}{1+\tan^2t}\left(1+\tan^2t\right)dt=\int dt=t;do:x=\tan t\Rightarrow t=arc\tan x\)
Do đó, thay tích phân J vào (2), ta có :
\(\int\frac{x^2+2x-1}{\left(x-1\right)\left(x^2+1\right)}dx=\ln\left|x-1\right|+arc\tan x+C\)
b) Ta phân tích
\(f\left(x\right)=\frac{x^2+1}{\left(x-1\right)^3\left(x+3\right)}=\frac{A}{\left(x-1\right)^3}+\frac{B}{\left(x-1\right)^2}+\frac{C}{x-1}+\frac{D}{x+3}\)\(=\frac{A\left(x+3\right)+B\left(x-1\right)\left(x+3\right)+C\left(x-1\right)^2\left(x+3\right)+D\left(x-1\right)^3}{\left(x-1\right)^3\left(x+3\right)}\)
Thay x=1 và x=-3 vào hai tử số, ta được :
\(\begin{cases}x=1\rightarrow2=4A\rightarrow A=\frac{1}{2}\\x=-3\rightarrow10=-64D\rightarrow D=-\frac{5}{32}\end{cases}\)
Thay hai giá trị của A và D vào (*) và đồng nhất hệ số hai tử số, ta cso hệ hai phương trình :
\(\begin{cases}0=C+D\Rightarrow C=-D=\frac{5}{32}\\1=3A-3B+3C-D\Rightarrow B=\frac{3}{8}\end{cases}\)
\(\Rightarrow f\left(x\right)=\frac{1}{2\left(x-1\right)^3}+\frac{3}{8\left(x-1\right)^2}+\frac{5}{32\left(x-1\right)}-+\frac{5}{32\left(x+3\right)}\)
Vậy :
\(\int\frac{x^2+1}{\left(x-1\right)^3\left(x+3\right)}dx=\)\(\left(\frac{1}{2\left(x-1\right)^3}+\frac{3}{8\left(x-1\right)^2}+\frac{5}{32\left(x-1\right)}-+\frac{5}{32\left(x+3\right)}\right)dx\)
\(=-\frac{1}{a\left(x-1\right)^2}-\frac{3}{8\left(x-1\right)}+\frac{5}{32}\ln\left|x-1\right|-\frac{5}{32}\ln\left|x+3\right|+C\)
\(=-\frac{1}{a\left(x-1\right)^2}-\frac{3}{8\left(x-1\right)}+\frac{5}{32}\ln\left|\frac{x-1}{x+3}\right|+C\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(f\left(x\right)=\frac{3x^2+3x+12}{\left(x-1\right)\left(x+2\right)x}=\frac{A}{x-1}+\frac{B}{x+2}+\frac{C}{x}=\frac{Ax\left(x+2\right)+Bx\left(x-1\right)+C\left(x-1\right)\left(x+2\right)}{\left(x-1\right)\left(x+2\right)x}\)
Bằng cách thay các nghiệm thực của mẫu số vào hai tử số, ta có hệ :
\(\begin{cases}x=1\rightarrow18=3A\Leftrightarrow A=6\\x=-2\rightarrow18=6B\Leftrightarrow B=3\\x=0\rightarrow12=-2C\Leftrightarrow=-6\end{cases}\) \(\Rightarrow f\left(x\right)=\frac{6}{x-1}+\frac{3}{x+2}-\frac{6}{x}\)
Vậy : \(\int\frac{3x^2+3x+12}{\left(x-1\right)\left(x+2\right)x}dx=\int\left(\frac{6}{x-1}+\frac{3}{x+2}-\frac{6}{x}\right)dx=6\ln\left|x-1\right|+3\ln\left|x+2\right|-6\ln\left|x\right|+C\)
b) \(f\left(x\right)=\frac{x^2+2x+6}{\left(x-1\right)\left(x-2\right)\left(x-4\right)}=\frac{A}{x-1}+\frac{B}{x-2}+\frac{C}{x-4}\)
\(=\frac{A\left(x-2\right)\left(x-4\right)+B\left(x-1\right)\left(x-4\right)+C\left(x-1\right)\left(x-2\right)}{\left(x-1\right)\left(x-2\right)\left(x-4\right)}\)
Bằng cách thay các nghiệm của mẫu số vào hai tử số ta có hệ :
\(\begin{cases}x=1\rightarrow9A=3\Leftrightarrow x=3\\x=2\rightarrow14=-2B\Leftrightarrow x=-7\\x=4\rightarrow30=6C\Leftrightarrow C=5\end{cases}\)
\(\Rightarrow f\left(x\right)=\frac{3}{x-1}-\frac{7}{x-2}+\frac{5}{x-4}\)
Vậy :
\(\int\frac{x^2+2x+6}{\left(x-1\right)\left(x-2\right)\left(x-4\right)}dx=\)\(\int\left(\frac{3}{x-1}+\frac{7}{x-2}+\frac{5}{x-4}\right)dx\)=\(3\ln\left|x-1\right|-7\ln\left|x-2\right|+5\ln\left|x-4\right|+C\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a)
\(\int\frac{2\left(x_{ }+1\right)}{x^2+2x_{ }-3}dx=\int\frac{2x+2}{x^2+2x-3}dx\)
\(=\int\frac{d\left(x^2+2x-3\right)}{x^2+2x-3}=ln\left|x^2+2x-3\right|+C\)
b)\(\int\frac{2\left(x-2\right)dx}{x^2-4x+3}=\int\frac{2x-4dx}{x^2-4x+3}=\int\frac{d\left(x^2-4x+3\right)}{x^2-4x+3}=ln\left|x^2-4x+3\right|+C\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta biến đổi f(x) về dạng :
\(f\left(x\right)=\frac{\sin x.\sin\left(x+\frac{\pi}{4}\right)+\cos x.\cos\left(x+\frac{\pi}{4}\right)}{\cos x.\cos\left(x+\frac{\pi}{4}\right)}-1=\frac{\cos\frac{\pi}{4}}{\cos x.\cos\left(x+\frac{\pi}{4}\right)}-1\)
\(\Rightarrow F\left(x\right)=\frac{\sqrt{2}}{2}\int\frac{dx}{\cos x.\cos\left(x+\frac{\pi}{4}\right)}dx-\int dx=\frac{\sqrt{2}}{2}\int\frac{dx}{\cos x.\cos\left(x+\frac{\pi}{4}\right)}dx-x\left(1\right)\)
Để tính \(J=\int\frac{dx}{\cos x.\cos\left(x+\frac{\pi}{4}\right)}dx\)
Ta có \(\int\frac{dx}{\cos x.\cos\left(x+\frac{\pi}{4}\right)}dx=\sqrt{2}\int\frac{1}{\cos x.\left(\cos x-\sin x\right)}dx=\sqrt{2}\int\frac{1}{\left(1-\tan x\right)}.\frac{1}{\cos^2x}dx\)
\(=-\sqrt{2}\int\frac{d\left(1-\tan x\right)}{1-\tan x}=\sqrt{2}\ln\left|1-\tan x\right|+C\)
![](https://rs.olm.vn/images/avt/0.png?1311)
(\(=\left(\frac{1}{20}x^5+\frac{4}{3}x^4+\frac{3}{5}x^{\frac{3}{5}}+\frac{1}{2}x^2-2x+C\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(=\left(\frac{m}{4}x^4-x^3+\frac{2}{3}\left(x-1\right)^{\frac{3}{2}}-\frac{4m}{2.x^2}-\frac{5}{2.x^2}-7mx+C\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Khai triển biểu thức dưới dấu nguyên hàm thành tổng các phân thức đơn giản
\(\frac{\left(x-1\right)dx}{x^2\left(x-2\right)\left(x+1\right)^2}=\frac{A}{x^2}+\frac{B}{x}+\frac{C}{x-2}+\frac{D}{\left(x+1\right)^2}+\frac{E}{x-1}\)
Quy đồng mẫu số chung và cân bằng tử số của hai vế với nhau, ta có :
\(A\left(x-2\right)\left(x+1\right)^2+Bx\left(x-2\right)\left(x+1\right)^2+Cx^2\left(x+1\right)^2+Dx\left(x-2\right)+Ẽx^2\left(x+1\right)\left(x-2\right)\equiv x-1\) (a)
Để xác định các hệ số A, B, C, D, E ta thay \(x=0,x=2,x=-1\) vào (a) ta thu được \(\begin{cases}-2A=-1\\36C=1\\-3D=-2\end{cases}\) \(\Rightarrow\) \(A=\frac{1}{2},C=\frac{1}{36},D=\frac{2}{3}\)
Thay các giá trị này vào (a) và mở các dấu ngoặc ta có :
\(\left(B+E+\frac{1}{36}\right)x^4+\left(\frac{11}{9}-E\right)x^3+\left(-3B-2E-\frac{47}{36}\right)x^2+\left(-\frac{3}{2}-2B\right)x-1\equiv x-1\)
Cân bằng các hệ số của \(x^3\) và của \(x\) ta thu được :
\(\begin{cases}\frac{11}{9}-E=0\\-\frac{3}{2}-2B=1\end{cases}\) \(\Rightarrow\) \(B=-\frac{5}{4},E=\frac{11}{9}\)
Như vậy :\(A=\frac{1}{2},C=\frac{1}{36},D=\frac{2}{3}\),\(B=-\frac{5}{4},E=\frac{11}{9}\)
Từ đó suy ra :
\(I=-\frac{1}{2x}-\frac{5}{4}\ln\left|x-2\right|-\frac{2}{3\left(x+1\right)}+\frac{11}{9}\ln\left|x+1\right|+C\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Đặt \(u=x^2\); \(dv=2^xdx\). Khi đó \(du=2xdx\) ; \(v=\int2^xdx=\frac{2^x}{\ln2}\) và \(I_1=x^2\frac{2^x}{\ln2}-\frac{2}{\ln2}\int x2^xdx\)
Lại áp dụng phép lấy nguyên hàm từng phần cho tích phân ở vế phải bằng cách đặt :
\(u=x\) ; \(dv=2^xdx\) và thu được \(du=dx\) ; \(v=\frac{2^x}{\ln2}\) Do đó
\(I_1=x^2\frac{2^x}{\ln_{ }2}-\frac{2}{\ln2}\left[x\frac{2^x}{\ln2}-\frac{1}{\ln2}\int2^xdx\right]\)
= \(x^2\frac{2^x}{\ln_{ }2}-\frac{2}{\ln2}\left[x\frac{2^x}{\ln2}-\frac{2^x}{\ln^22}\right]+C\) = \(\left(x^2-\frac{2}{\ln2}x+\frac{2}{\ln^22}\right)\frac{2^x}{\ln2}+C\)
b) Đặt \(u=x^2\); \(dv=e^{3x}dx\)
Khi đó \(du=2xdx\) ; \(v=\int e^{3x}dx=\frac{1}{3}\int e^{3x}d\left(3x\right)=\frac{1}{3}e^{ex}\)
Do đó:
\(I_2=\frac{x^2}{3}e^{3x}-\frac{1}{3}\int xe^{3x}dx\) (a)
Lại áp dụng phép lấy nguyên hàm từng phần cho nguyên hàm ở vế phải. Ta đặt \(u=x\) ; \(dv=e^{3x}dx\)
Khi đó \(du=dx\) ; \(v=\int e^{3x}dx=\frac{1}{3}e^{3x}\) và
\(\int xe^{ex}dx=\frac{x}{3}e^{3x}-\frac{1}{3}\int e^{3x}dx=\frac{x}{3}e^{3x}-\frac{1}{9}e^{3x}\)
Thế kết quả thu được vào (a) ta có :
\(I_2=\frac{x^2}{3}e^{3x}-\frac{2}{3}\left(\frac{x}{3}e^{3x}-\frac{1}{9}e^{3x}\right)+C=\frac{e^{3x}}{27}\left(9x^2-6x+2\right)+C\)
Dễ ợt, bạn làm như sau nhé :
= \(=\left(me^x\frac{2a^x}{lna}+\frac{1}{ln3}\left(xlnx-x\right)+cos2x+\frac{3^{ }}{4^{ }}sin4x+C\right)\)