![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
nhờ người ta giải mà cười hihi
em thì bó tay chấm chữ com vào ăn
TXĐ: D=R
\(9^{x^2+x-1}-10.3^{x^2+x-2}+1=0\)
\(\Leftrightarrow9^{x^2+x-1}-10.\frac{3^{x^2+x-1}}{3}+1=0\)
Đặt t = \(3^{x^2+x-1}\) (t>0)
\(\Leftrightarrow t^2-\frac{10}{3}t+1=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}t=3\\t=\frac{1}{3}\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}3^{x^2+x-1}=3\\3^{x^2+x-1}=\frac{1}{3}\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x^2+x-1=1\\x^2+x-1=\frac{1}{3}\end{array}\right.\)
![](https://rs.olm.vn/images/avt/0.png?1311)
bạn chỉ cần tách x4-1 thành (x2-1)(x2+1),rồi đặt x2=t là ok
![](https://rs.olm.vn/images/avt/0.png?1311)
21. d[O,(P)]max => OA vuông góc (P) => n(P) =Vecto OA=(2; -1; 1)
=> (P):2x - y +z - 6 = 0. ĐA: D
22. D(x; 0; 0). AD = BC <=> (x-3)2 +16 = 25 => x = 0 v x = 6. ĐA: C
34. ĐA: A.
37. M --->Ox: A(3; 0; 0)
Oy: B(0; 1; 0)
Oz: C(0; 0;2)
Pt mp: x\3 + y\1+ z\2 = 1 <==> 2x + 6y + 3z - 6 = 0. ĐA: B
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Câu 3:
+)Vì BC vuông góc với cả SA và AB nên BC vuông góc với (SAB)
\(\Rightarrow\left(\widehat{SC,\left(SAB\right)}\right)=\widehat{BSC}=30^o\)
Ta có \(SB=\frac{BC}{tan\widehat{BSC}}=a\sqrt{3}\) , \(SA=\sqrt{SB^2-AB^2}=a\sqrt{2}\)
+)Sử dụng phương pháp tọa độ hóa
Xét hệ trục tọa độ Axyz, A là gốc tọa độ, B,D,S lầ lượt nằm trên các tia Ax, Ay, Az
\(\Rightarrow B\left(a;0;0\right),C\left(a;a;0\right),D\left(0;a;0\right),S\left(0;0;a\sqrt{2}\right)\)
\(\Rightarrow E\left(\frac{a}{2};\frac{a}{2};0\right),F\left(0;\frac{a}{2};\frac{a}{\sqrt{2}}\right)\)
Như vậy là biết tọa độ 4 điểm D,E,F,C ta có thể viết phương trình 2 đường thẳng DE, FC và tính khoảng cách theo công thức sau
\(d\left(DE;FC\right)=\frac{\left|\left[\overrightarrow{DE.}\overrightarrow{FC}\right]\overrightarrow{EC}\right|}{\left|\overrightarrow{DE.}\overrightarrow{FC}\right|}\) (không nhớ rõ lắm)
Câu 5:
Gọi I là trung điểm BC, dễ thấy BC vuông góc với (AIA') (vì BC vuông góc với IA,IA')
Từ I kẻ IH vuông góc với AA' tại H
suy ra IH là đường nố vuông góc chung của BC và AA' hay IH chính là khoảng cách của 2 đường thẳng BC và AA'
Tính được IA=a và IA'=\(a\sqrt{3}\)
Lại có tam giác AIA' vuông tại I, có đường cao IH nên ta dùng hệ thức:
\(\frac{1}{IH^2}=\frac{1}{AI^2}+\frac{1}{A'I^2}\Rightarrow IH=\frac{a\sqrt{3}}{2}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Lời giải:
\(f(x)=e^x(\sin x-2\cos x)\)
\(\Rightarrow f'(x)=-e^x\cos x+3e^x\sin x\)
\(f''(x)=4e^x\sin x+2e^x\cos x\)
Do đó:
\(m=\frac{f'(x)}{f''(x)+5e^x}=\frac{-e^x\cos x+3e^x\sin x}{4e^x\sin x+2e^x\cos x+5e^x}=\frac{3\sin x-\cos x}{4\sin x+2\cos +5}\)
\(\Leftrightarrow m(4\sin x+2\cos x+5)=3\sin x-\cos x\)
\(\Leftrightarrow 5m=\sin x(3-4m)+\cos x(-2m-1)\) (*)
Để pt có nghiệm thì \(5m\in [\min; \max]\) của
\(\sin x(3-4m)+\cos x(-2m-1)\) (1)
Áp dụng BĐT Bunhiacopxky:
\([\sin x(3-4m)+\cos x(-2m-1)]^2\leq (\sin^2x+\cos^2x)[(3-4m)^2+(-2m-1)^2](**)\)
\(\Leftrightarrow [\sin x(3-4m)+\cos x(-2m-1)]^2\leq 20m^2-20m+10\)
\(\Leftrightarrow -\sqrt{20m^2-20m+10}\leq \sin x(3-4m)+\cos x(-2m-1)\le \sqrt{20m^2-20m+10}\) (2)
Từ \((1);(2)\Rightarrow -\sqrt{20m^2-20m+10}\leq 5m\leq \sqrt{20m^2-20m+10}\)
\(\Leftrightarrow 25m^2\leq 20m^2-20m+10\) (***)
\(\Leftrightarrow m^2+4m-2\leq 0\Leftrightarrow -2-\sqrt{6}\leq m\leq \sqrt{6}-2\)
Do đó, \(a=-2-\sqrt{6};b=\sqrt{6}-2\)
\(\Leftrightarrow a+4b=-10+3\sqrt{6}\)
Đáp án B
Thực chất bạn có thể kết hợp từ dòng (*), (**), (***) luôn được nhưng để dễ hiểu hơn thì mình biến bài làm dài hơn 1 chút.