Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

f(x) = x3 - 3x2 - 3x - 1 ⋮ x2 + x + 1
f(x) = x3 + x2 - 4x2 + x - 4x - 4 + 3 ⋮ x2 + x + 1
f(x) = ( x3 + x2 + x ) - ( 4x2 + 4x + 4 ) + 3 ⋮ x2 + x + 1
f(x) = x ( x2 + x + 1 ) - 4 ( x2 + x + 1 ) + 3 ⋮ x2 + x + 1
f(x) = ( x2 + x + 1 ) ( x - 4 ) + 3 ⋮ x2 + x + 1
Mà ( x2 + x + 1 ) ( x - 4 ) ⋮ x2 + x + 1
=> 3 ⋮ x2 + x + 1
=> x2 + x + 1 thuộc Ư(3) = { 1; 3; -1; -3 }
Tự thay vào rồi tìm x thôi bạn
VD :
x2 + x + 1 = 1
<=> x2 + x = 0
<=> x ( x + 1 ) = 0
\(\Rightarrow\orbr{\begin{cases}x=0\\x+1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}}\)
Xét tiếp 3 t/h còn lại nha bạn

c) Cách 1:
x^4+3x^3-x^2+ax+b x^2+2x-3 x^2+x x^4+2x^3-3x^2 - x^3+2x^2+ax+b x^3+2x^2-3x - (a+3)x+b
Để \(P\left(x\right)⋮Q\left(x\right)\)
\(\Leftrightarrow\left(a+3\right)x+b=0\)
\(\Leftrightarrow\hept{\begin{cases}a+3=0\\b=0\end{cases}\Leftrightarrow}\hept{\begin{cases}a=-3\\b=0\end{cases}}\)
Vậy a=-3 và b=0 để \(P\left(x\right)⋮Q\left(x\right)\)
a)
2n^2-n+2 2n+1 n-1 2x^2+n - -2n+2 -2n-1 - 3
Để \(2n^2-n+2⋮2n+1\)
\(\Leftrightarrow3⋮2n+1\)
\(\Leftrightarrow2n+1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
\(\Leftrightarrow n\in\left\{0;1;-2;-1\right\}\)
Vậy \(n\in\left\{0;1;-2;-1\right\}\)để \(2n^2-n+2⋮2n+1\)

TA CÓ:
\(\frac{x^3-3x^2-3x-1}{x^2+x+1}=x^3-\frac{3\left(x^2+x+1\right)+2}{x^2+x+1}\)
\(=x^3-3+\frac{2}{x^2+x+1}\)
Để thỏa mãn đề bài => \(x^2+x+1\inƯ\left(2\right)\)
\(\Rightarrow x^2+x+1\in\left\{\pm1;\pm2\right\}\)
\(\Rightarrow x^2+x\in\left\{0;-2;1;-3\right\}\)
\(\Rightarrow x\left(x+1\right)\in\left\{0;-2;1;-3\right\}\)
đến đây làm nốt

a) 3x3-2x2+2 chia x+1= 3x2-5x+5 dư -3 b) -3 chia hết x+1 vậy chon x =2
1)
a) \(-7x\left(3x-2\right)\)
\(=-21x^2+14x\)
b) \(87^2+26.87+13^2\)
\(=87^2+2.87.13+13^2\)
\(=\left(87+13\right)^2\)
\(=100^2\)
\(=10000\)
2)
a) \(x^2-25\)
\(=x^2-5^2\)
\(=\left(x-5\right)\left(x+5\right)\)
b) \(3x\left(x+5\right)-2x-10=0\)
\(\Leftrightarrow3x\left(x+5\right)-\left(2x-10\right)=0\)
\(\Leftrightarrow3x\left(x+5\right)-2\left(x-5\right)=0\)
\(\Leftrightarrow\left(x+5\right)\left(3x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+5=0\\3x-2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-5\\3x=2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=\dfrac{2}{3}\end{matrix}\right.\)
Vậy..........
3)
a) \(A:B=\left(3x^3-2x^2+2\right):\left(x+1\right)\)
Vậy \(\left(3x^3-2x^2+2\right):\left(x+1\right)=\left(3x^2-5x-5\right)+7\)
b)
Để \(A⋮B\Rightarrow7⋮\left(x+1\right)\)
\(\Rightarrow\left(x+1\right)\in U\left(7\right)=\left\{-1;1-7;7\right\}\)
Vì x là số nguyên nên x=0 ; x=6 thì \(A⋮B\)
Olm chào em, đây là dạng toán nâng cao chuyên đề phép chia đa thức, cấu trúc thi chuyên, thi học sinh giỏi các cấp. Hôm nay, Olm sẽ hướng dẫn các em giải chi tiết dạng này như sau:
Giải:
(\(x^3-3x^2-3x-1)\) ⋮ (\(x^2+x+1\))
[(\(x^3+x^2+x)\) - 4(\(x^2+x+1\)) + 3] ⋮ (\(x^2+x+1\))
3 ⋮ (\(x^2+x+1\))
\(\left(x^2+x+1\right)\inƯ\left(3\right)=\left\lbrace-3;-1;1;3\right\rbrace\)
\(x^2+x+1\) = (\(x+\frac12\))\(^2\) + \(\frac34\) ≥ \(\frac34\) ∀ \(x\)
⇒ (\(x^2+x+1)\) ∈ {1; 3}
TH1: \(x^2+x+1\) = 1
\(x^2+x=0\)
\(x\left(x+1\right)=0\)
\(\left[\begin{array}{l}x=0\\ x+1=0\end{array}\right.\)
\(\left[\begin{array}{l}x=0\\ x=-1\end{array}\right.\)
TH2: \(x^2+x+1\) = 3
\(x^2+x=2\)
\(x^2+x-2=0\)
(\(x^2-x\)) + (\(2x-2\)) = 0
\(x\left(x-1\right)\) + 2(\(x-1\)) = 0
(\(x-1\))(\(x+2)=0\)
\(\left[\begin{array}{l}x-1=0\\ x+2=0\end{array}\right.\)
\(\left[\begin{array}{l}x=1\\ x=-2\end{array}\right.\)
Kết hợp 2 trường hợp ta có: \(x\in\) {-2; -1; 0; 1}