
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Đặt \(a=\dfrac{1}{x};b=\dfrac{1}{y};c=\dfrac{1}{z}\Rightarrow xyz=1\) và \(x;y;z>0\)
Gọi biểu thức cần tìm GTNN là P, ta có:
\(P=\dfrac{1}{\dfrac{1}{x^3}\left(\dfrac{1}{y}+\dfrac{1}{z}\right)}+\dfrac{1}{\dfrac{1}{y^3}\left(\dfrac{1}{z}+\dfrac{1}{x}\right)}+\dfrac{1}{\dfrac{1}{z^3}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)}\)
\(=\dfrac{x^3yz}{y+z}+\dfrac{y^3zx}{z+x}+\dfrac{z^3xy}{x+y}=\dfrac{x^2}{y+z}+\dfrac{y^2}{z+x}+\dfrac{z^2}{x+y}\)
\(P\ge\dfrac{\left(x+y+z\right)^2}{y+z+z+x+x+y}=\dfrac{x+y+z}{2}\ge\dfrac{3\sqrt[3]{xyz}}{2}=\dfrac{3}{2}\)
\(P_{min}=\dfrac{3}{2}\) khi \(x=y=z=1\) hay \(a=b=c=1\)
Đặt \(a = \frac{1}{x} ; b = \frac{1}{y} ; c = \frac{1}{z} \Rightarrow x y z = 1\) và \(x ; y ; z > 0\)
Gọi biểu thức cần tìm GTNN là P, ta có:
\(P = \frac{1}{\frac{1}{x^{3}} \left(\right. \frac{1}{y} + \frac{1}{z} \left.\right)} + \frac{1}{\frac{1}{y^{3}} \left(\right. \frac{1}{z} + \frac{1}{x} \left.\right)} + \frac{1}{\frac{1}{z^{3}} \left(\right. \frac{1}{x} + \frac{1}{y} \left.\right)}\)
\(= \frac{x^{3} y z}{y + z} + \frac{y^{3} z x}{z + x} + \frac{z^{3} x y}{x + y} = \frac{x^{2}}{y + z} + \frac{y^{2}}{z + x} + \frac{z^{2}}{x + y}\)
\(P \geq \frac{\left(\left(\right. x + y + z \left.\right)\right)^{2}}{y + z + z + x + x + y} = \frac{x + y + z}{2} \geq \frac{3 \sqrt[3]{x y z}}{2} = \frac{3}{2}\)
\(P_{m i n} = \frac{3}{2}\) khi \(x = y = z = 1\) hay \(a = b = c = 1\)

\({x^2} = {4^2} + {2^2} = 20 \Rightarrow x = 2\sqrt 5 \)
\({y^2} = {5^2} - {4^2} = 9 \Leftrightarrow y = 3\)
\({z^2} = {\left( {\sqrt 5 } \right)^2} + {\left( {2\sqrt 5 } \right)^2} = 25 \Rightarrow z = 5\)
\({t^2} = {1^2} + {2^2} = 5 \Rightarrow t = \sqrt 5 \)

a: ta có: EI⊥BF
AC⊥BF
Do đó: EI//AC
=>\(\hat{IEB}=\hat{ACB}\) (hai góc đồng vị)
mà \(\hat{ABC}=\hat{ACB}\) (ΔABC cân tại A)
nên \(\hat{KBE}=\hat{IEB}\)
Xét ΔKBE vuông tại K và ΔIEB vuông tại I có
BE chung
\(\hat{KBE}=\hat{IEB}\)
Do đó: ΔKBE=ΔIEB
=>EK=BI
b: Điểm D ở đâu vậy bạn?

bài 1:
\(a.x^3+1=\left(x+1\right)\left(x^2-x+1\right)\)
\(b.x^3-\frac{1}{27}=\left(x-\frac13\right)\left(x^2+\frac13x+\frac19\right)\)
\(c.x^3-27y^3=\left(x-3y\right)\left(x^2+3xy+9y^2\right)\)
\(d.27x^3+8y^3=\left(3x+2y\right)\left(9x^2-6xy+4y^2\right)\)
bài 2:
\(a.A=\left(x+2\right)\left(x^2-2x+4\right)-x^3+2\)
\(=x^3+8-x^3+2=10\)
\(b.B=\left(x-1\right)\left(x^2+x+1\right)-\left(x+1\right)\left(x^2-x+1\right)\)
\(=\left(x^3-1\right)-\left(x^3+1\right)=-2\)
\(c.C=\left(2x-y\right)\left(4x^2+2xy+y^2\right)+\left(y-3x\right)\left(y^2+3xy+9x^2\right)\)
\(=\left(8x^3-y^3\right)+\left(y^3-27x^3\right)=-19x^3\)
bài 3:
\(a.A=\left(x-5\right)\left(x^2+5x+25\right)=x^3-125\)
thay x = 6 vào A ta được:
\(6^3-125=216-125=91\)
\(b.B=\left(3x-2\right)\left(9x^2+6x+4\right)=27x^3-8\)
thay x = 10/3 vào B ta được:
\(27\cdot\left(\frac{10}{3}\right)^3-8=992\)
\(c.C=\left(2x-3y\right)\left(4x^2+6xy+9y^2\right)=8x^3-27y^3\)
thay x = 5; y = 5/3 vào C ta được
\(8\cdot5^3-27\cdot\left(\frac53\right)^3=875\)
bài 4:
\(a.\left(2x-5\right)\left(4x^2+10x+25\right)-\left(x+3\right)\left(x^2-3x+9\right)\)
\(=\left(2x-5\right)\left\lbrack\left(2x\right)^2+\left(2x\right)\cdot5+5^2\right\rbrack-\left(x+3\right)\left(x^2-3x+9\right)\)
\(=\left(2x\right)^3-5^3-\left(x^3+3^3\right)\)
\(=8x^3-125-\left(x^3+27\right)=7x^3-152\)
\(b.\left(2y-1\right)\left(4y^2+2y+1\right)+\left(3-y\right)\left(9+3y+y^2\right)+y\left(2-7y^2\right)\)
\(=\left(2y-1\right)\left\lbrack\left(2y\right)^2+\left(2y\right)\cdot1+1^2\right\rbrack+\left(3-y\right)\left(3^2+3y+y^2\right)+2y-7y^3\)
\(=\left(2y\right)^3-1^3+\left(3^3-y^3\right)+2y-7y^3\)
\(=8y^3-1+27-y^3+2y-7y^3=2y+26\)
bài 5:
\(a.A=\left(x+1\right)\left(x^2-x+1\right)-\left(x+3\right)\left(x^2-3x+9\right)\)
\(=\left(x^3+1\right)-\left(x^3+27\right)=-26\)
\(b.B=\left(y+2\right)\left(y^2-2y+4\right)+\left(5-y\right)\left(25+5y+y^2\right)\)
\(=\left(y^3+8\right)+\left(125-y^3\right)=133\)
\(c.C=4\cdot\left(x^3-8\right)-4\cdot\left(x+2\right)\left(x^2-2x+4\right)\)
\(=4\cdot\left(x^3-2^3\right)-4\cdot\left(x^3+2^3\right)\)
\(=4x^3-32-4x^3-32=-64\)
\(d.D=\left(x+2y\right)\left(x^2-2xy+4y^2\right)-\left(x-2y\right)\left(x^2+2xy+4y^2\right)-8\cdot\left(2y^3+1\right)\)
\(=\left(x^3+8y^3\right)-\left(x^3-8y^3\right)-8\cdot\left(2y^3+1\right)=16y^3-16y^3-8=-8\)


a.
\(A=\left(\dfrac{\left(x-1\right)\left(x^2+x+1\right)}{x\left(x-1\right)}+\dfrac{\left(x-2\right)\left(x+2\right)}{x\left(x-2\right)}+\dfrac{x-2}{x}\right):\dfrac{x+1}{x}\)
\(=\left(\dfrac{x^2+x+1}{x}+\dfrac{x+2}{x}+\dfrac{x-2}{x}\right):\dfrac{x+1}{x}\)
\(=\left(\dfrac{x^2+3x+1}{x}\right).\dfrac{x}{x+1}\)
\(=\dfrac{x^2+3x+1}{x+1}\)
2.
\(x^3-4x^3+3x=0\Leftrightarrow x\left(x^2-4x+3\right)=0\)
\(\Leftrightarrow x\left(x-1\right)\left(x-3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\left(loại\right)\\x=1\left(loại\right)\\x=3\end{matrix}\right.\)
Với \(x=3\Rightarrow A=\dfrac{3^2+3.3+1}{3+1}=\dfrac{19}{4}\)

1
a
\(A=x^2-2x+4=x^2-2x+1+3\\=\left(x-1\right)^2+3\ge3\)
Min A = 3 khi và chỉ khi `x=1`
b
\(B=x^2+4x+5=x^2+4x+4+1\\ =\left(x+2\right)^2+1\ge1\)
Min B = 1 khi và chỉ khi `x=-2`
c
\(C=x^2+3x+4=x^2+3x+\dfrac{9}{4}+\dfrac{7}{4}\\ =\left(x+\dfrac{3}{2}\right)^2+\dfrac{7}{4}\ge\dfrac{7}{4}\)
Min C = \(\dfrac{7}{4}\) khi và chỉ khi \(x=-\dfrac{3}{2}\)
d
\(D=3x^2-6x+4=3\left(x^2-2x+\dfrac{4}{3}\right)\\ =3\left(x^2-2x+1+\dfrac{1}{3}\right)\\ =3\left(x-1\right)^2+3.\dfrac{1}{3}\ge3.\dfrac{1}{3}\)
Min D = 1 khi và chỉ khi `x=1`