\(\pm1\) thì hệ phương trình...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 11 2019

pt (1) <=>\(x=2+my-4m\) thay vào pt (2) có:

\(\left(2+my-4m\right)m+y=3m+1\)

<=>\(y\left(m^2+1\right)=m+4m^2+1\) (3)

Để hpt có nghiệm <=> pt (3) có nghiệm

<=> \(m^2+1\ne0\) (luôn đúng với mọi m)

=> pt (3) có nghiệm duy nhất => hpt có nghiệm duy nhất với mọi m.

Do x0,y0 là 1 nghiệm của hệ => \(\left\{{}\begin{matrix}x_0-my_0=2-4m\\my_0+y_0=3m+1\end{matrix}\right.\)

<=>\(\left\{{}\begin{matrix}x_0-2=m\left(y_0-4\right)\\y_0-1=m\left(3-x_0\right)\end{matrix}\right.\) <=>\(\left\{{}\begin{matrix}\left(x_0-2\right)\left(3-x_0\right)=m\left(3-x_0\right)\left(y_0-4\right)\\\left(y_0-1\right)\left(y_0-4\right)=m\left(3-x_0\right)\left(y_0-4\right)\end{matrix}\right.\)

=>\(\left(x_0-2\right)\left(3-x_0\right)=\left(y_0-1\right)\left(y_0-4\right)\)

<=>\(5x_0-x_0^2-6=y_0^2-5y_0+4\)

<=>\(x^2_0+y^2_0-5\left(y_0+x_0\right)+10=0\)

20 tháng 2 2019

Bài 2: Để hpt có nghiệm duy nhất thì \(\dfrac{m}{1}\ne\dfrac{3}{-2}\Leftrightarrow\)\(m\ne\dfrac{-3}{2}\)

Bài 1: \(\left\{{}\begin{matrix}mx+y=5\left(1\right)\\2x-y=-2\left(2\right)\end{matrix}\right.\)

Lấy (1) cộng (2), ta được: \(\left(m+2\right)x=3\Rightarrow x=\dfrac{3}{m+2}\)

Thay vào (2): \(\dfrac{6}{m+2}-y=-2\)\(\Rightarrow y=\dfrac{6+2m+4}{m+2}=\dfrac{2m+10}{m+2}\)

x0+y0=1\(\Rightarrow\dfrac{3}{m+2}+\dfrac{2m+10}{m+2}=\dfrac{2m+13}{m+2}=1\)(ĐK: \(m\ne-2\))

\(\Rightarrow2m+13=m+2\Leftrightarrow m=-11\left(TM\right)\)

Bài 3: Thay \(x=\sqrt{2};y=4-\sqrt{2}\) vào đths y=ax+b:

\(\sqrt{2}a+b=4-\sqrt{2}\left(1\right)\)

Thay x=2; \(y=\sqrt{2}\) vào đths y=ax+b:

\(2a+b=\sqrt{2}\left(2\right)\)

Từ (1) và (2), ta có hpt: \(\left\{{}\begin{matrix}\sqrt{2}a+b=4-\sqrt{2}\\2a+b=\sqrt{2}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}a=-2\\b=\sqrt{2}+4\end{matrix}\right.\)

Vậy đths \(y=-2x+4+\sqrt{2}\) đi qua điểm \(\left(\sqrt{2};4-\sqrt{2}\right)\) và \(\left(2;\sqrt{2}\right).\)

7 tháng 8 2017

Toán lớp mấy

7 tháng 8 2017

toán tuổi thơ chắc chỉ cần đáp số thôi nhỉ

1. S={7;-5}

2. HPT có 2 nghiệm (x;y) là (2;-3) và (3/2;-7/2)

3. a=b=0

4. Dễ rồi

13 tháng 2 2019

a)Với m=1, ta có:

\(\left\{{}\begin{matrix}x+y=5\left(1\right)\\2x-y=-2\left(2\right)\end{matrix}\right.\)

Lấy (1) cộng (2), ta được:

\(3x=3\Rightarrow x=1\Rightarrow y=4\)

Vậy hpt có nghiệm là (1;4).

b) ĐK: \(m\ne0\)

Cộng hai pt của hpt, ta được:

\(\left(m+2\right)x=3\Rightarrow x=\dfrac{3}{m+2}\)

Thay vào (2), ta có:

\(y=\dfrac{6+2m+4}{m+2}=\dfrac{2m+10}{m+2}\)

Có: x0+y0=1\(\Rightarrow\dfrac{2m+13}{m+2}=1\)

\(\Rightarrow2m+13=m+2\)

\(\Rightarrow m=-11\left(TM\right)\)

Vậy với m=-11 thì x0+y0=1.

27 tháng 3 2020

bn ơi sao gần cuối lại là 2m + 13 = m + 2 ???

bn giải thik giùm mk vs !! Thanks !! :)))

25 tháng 2 2017

Từ pt 1, rút x=3y+3 ra rồi thay vào pt dưới

giải pt bậc 2 là ra nghiệm, từ đó thay vào tính M

24 tháng 9 2021

????????

cho hệ phương trình

các anh các chị nói gì nhợ

thêm lãi ý hả

trời nhưng chưa kinh bằng em đâu

NV
25 tháng 6 2020

Pt hoành độ giao điểm: \(x^2-mx-m-1=0\)

\(a-b+c=1+m-m-1=0\) nên pt có 2 nghiệm:

\(\left\{{}\begin{matrix}x_1=-1\\x_2=m+1\end{matrix}\right.\) để 2 nghiệm pb \(\Rightarrow-1\ne m+1\Rightarrow m\ne-2\)

\(\Rightarrow\left\{{}\begin{matrix}y_1=x_1^2=1\\y_2=x_2^2=m^2+2m+1\end{matrix}\right.\)

\(y_1+y_2>5\Leftrightarrow m^2+2m+2>5\)

\(\Leftrightarrow m^2+2m-3>0\Rightarrow\left[{}\begin{matrix}m< -3\\m>1\end{matrix}\right.\)