Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Nói chung đề thế nào cũng làm được nhưng nghe có vẻ nó ngang thôi
\(m^2x+3m-2=m+x\left(1\right)\)
\(\Leftrightarrow\left(m^2-1\right)x+3m-2=0\)
nếu m=+-1 \(\Leftrightarrow0.x+-3-2=0\Rightarrow vonghiem\)
nếu m khác +-1 phương trình luôn có nghiệm duy nhất
\(x=\frac{2-3m}{m^2-1}\)
a) \(x_0>0\Rightarrow\frac{2-3m}{m^2-1}>0\Rightarrow\orbr{\begin{cases}m< -1\\\frac{2}{3}< m< 1\end{cases}}\)
b) pt vô nghiệm khi m=+-1
có nghiệm duy nhất x=....khi m khác +-1

Lời giải:
a)
Khi $m=-1$ thì pt trở thành:
\((-1+1)x^2-(2.-1+3)x+(-1)+4=0\)
\(\Leftrightarrow -x+3=0\Leftrightarrow x=3\)
b)
Ta thấy $m=-1$ thì pt có nghiệm $x=3$ như phần a
Với $m\neq -1$ thì $m+1\neq 0$ nên pt đã cho là pt bậc 2
PT có nghiệm \(\Leftrightarrow \Delta=[-(2m+3)]^2-4(m+4)(m+1)\geq 0\)
\(\Leftrightarrow -8m-7\geq 0\Leftrightarrow 8m+7\leq 0\)
\(\Leftrightarrow m\leq \frac{-7}{8}\)

a)\(\Leftrightarrow-79x+7mx-5m+14=0\)
\(\Leftrightarrow\left(7m-79\right)x-5m+14=0\)
\(\Leftrightarrow x=\dfrac{5m-14}{7m-79}\)\(\left(m\ne\dfrac{79}{7}\right)\)
Vậy để pt có nghiệm thì \(m\ne\dfrac{79}{7}\)
b)\(\Leftrightarrow\left(2m-4\right)x+8m+4-m^2+4=0\)
\(\Leftrightarrow x=\dfrac{m^2-8-8m}{2m-4}\)\(\left(m\ne2\right)\)
Vậy pt có nghiệm \(x=\dfrac{m^2-8-8m}{2m-4}\Leftrightarrow m\ne2\)

c: (3x-2)(x+3)<0
=>x+3>0 và 3x-2<0
=>-3<x<2/3
d: \(\dfrac{x-2}{x-10}>=0\)
=>x-10>0 hoặc x-2<=0
=>x>10 hoặc x<=2
e: \(3x^2+7x+4< 0\)
\(\Leftrightarrow3x^2+3x+4x+4< 0\)
=>(x+1)(3x+4)<0
=>-4/3<x<-1

a, Ta có : \(7x\left(m-11\right)-2x+14=5m\)
=> \(7xm-77x-2x+14=5m\)
=> \(x\left(7m-77-2\right)+14=5m\)
=> \(x=\frac{5m-14}{7m-79}\)
Vậy phương trình có tập nghiệm là \(S=\left\{\frac{5m-14}{7m-79}\right\}\)
b, Ta có : \(2mx+4\left(2m+1\right)=m^2+4\left(x-1\right)\)
=> \(2mx+8m+4=m^2+4x-4\)
=> \(2mx-4x=m^2-4-8m-4\)
=> \(x=\frac{m^2-8m-8}{2m-4}\)
Vậy phương trình có tập nghiệm là \(S=\left\{\frac{m^2-8m-8}{2m-4}\right\}\)

a: =>x(a^2+b^2+2ab)=a+6
=>x(a+b)^2=a+6
TH1: a=-b và a=-6
=>PT có vô số nghiệm
TH2: a=-b và a<>-6
=>PTVN
TH3: a<>-b
=>PT có nghiệm duy nhất là x=(a+6)/(a+b)^2
b: TH1: a=1
=>PT có vô số nghiệm
TH2: a<>1
=>PT có nghiệm duy nhất là \(x=\dfrac{-3\left(a-1\right)}{a-1}=-3\)
d: =>x(m^2-1)=2m-2
=>x(m-1)(m+1)=2(m-1)
TH1: m=1
=>PT có vô số nghiệm
TH2: m=-1
=>PTVN
TH3: m<>1; m<>-1
=>PT có nghiệm duy nhất là x=2/(m+1)
a) Nếu \(m^4-4=0\Leftrightarrow m^4=4\Leftrightarrow\orbr{\begin{cases}m=\sqrt{2}\\m=-\sqrt{2}\end{cases}}\)
TH1: \(m=\sqrt{2}\) khi đó PT tương đương:
\(\left[\left(\sqrt{2}\right)^4-4\right]x=3\sqrt{2}-6\)
\(\Leftrightarrow0x=3\sqrt{2}-6\)
=> PT vô nghiệm
TH2: \(m=-\sqrt{2}\) khi đó PT tương đương:
\(\left[\left(-\sqrt{2}\right)^4-4\right]x=-3\sqrt{2}-6\)
\(\Leftrightarrow0x=-3\sqrt{2}-6\)
=> PT vô nghiệm
Nếu \(m^4-4\ne0\Rightarrow\orbr{\begin{cases}m\ne\sqrt{2}\\m\ne-\sqrt{2}\end{cases}}\)
Khi đó PT có nghiệm duy nhất: \(x=\frac{3m-6}{m^4-4}\)
KL: Nếu \(m=\pm\sqrt{2}\) thì PT vô nghiệm
Nếu \(m\ne\pm\sqrt{2}\) thì PT có nghiệm duy nhất \(x=\frac{3m-6}{m^4-4}\)
b) Ta có: \(\left(2m+1\right)x-2m=3x-2\)
\(\Leftrightarrow2mx+x-2m-3x+2=0\)
\(\Leftrightarrow2mx-2x=2m-2\)
\(\Leftrightarrow2x\left(m-1\right)=2\left(m-1\right)\)
\(\Leftrightarrow\left(m-1\right)x=m-1\)
Nếu \(m-1=0\Leftrightarrow m=1\) Khi đó PT trở thành:
\(\left(1-1\right)x=1-1\)
\(\Leftrightarrow0x=0\)
=> PT có vô số nghiệm \(x\inℝ\)
Nếu \(m-1\ne0\Rightarrow m\ne1\)
Khi đó PT có nghiệm duy nhất \(x=\frac{m-1}{m-1}=1\)
KL: Nếu m = 1 thì PT có vô số nghiệm \(x\inℝ\)
Nếu \(m\ne1\) thì PT có nghiệm duy nhất x = 1