
Bạn tham khảo pt 1 hộ mình nha. Chúc bạn học tốt~
\(5sinx-2=3\left(1-sinx\right)tan^2x\)
\(2.cos2x...">
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời. Pt 1. Bạn tham khảo phương trình 1 hộ mình nha. Chúc bạn học tốt e/ \(\Leftrightarrow\left(sin^2x+4sinx.cosx+3cos^2x\right)-\left(sinx+3cosx\right)=0\) \(\Leftrightarrow\left(sinx+cosx\right)\left(sinx+3cosx\right)-\left(sinx+3cosx\right)=0\) \(\Leftrightarrow\left(sinx+3cosx\right)\left(sinx+cosx-1\right)=0\) \(\Leftrightarrow\left[{}\begin{matrix}sinx+3cosx=0\\sinx+cosx-1=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}sinx=-3cosx\\\sqrt{2}sin\left(x+\frac{\pi}{4}\right)=1\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}tanx=-3\\sin\left(x+\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=arctan\left(-3\right)+k\pi\\x=k2\pi\\x=\frac{\pi}{2}+k2\pi\end{matrix}\right.\) d/ \(\Leftrightarrow2sinx+2sinx.cos2x-\left(1-sin2x\right)-2cosx=0\) \(\Leftrightarrow2\left(sinx-cosx\right)+2sinx\left(cos^2x-sin^2x\right)-\left(sinx-cosx\right)^2=0\) \(\Leftrightarrow2\left(sinx-cosx\right)-2sinx\left(sinx-cosx\right)\left(sinx+cosx\right)-\left(sinx-cosx\right)^2=0\) \(\Leftrightarrow\left(sinx-cosx\right)\left(2-2sin^2x-2sinx.cosx-sinx+cosx\right)=0\) \(\Leftrightarrow\left(sinx-cosx\right)\left[2cos^2x-2sinx.cosx-sinx+cosx\right]=0\) \(\Leftrightarrow\left(sinx-cosx\right)\left[2cosx\left(cosx-sinx\right)+cosx-sinx\right]=0\) \(\Leftrightarrow-\left(sinx-cosx\right)^2\left(2cosx+1\right)=0\) \(\Leftrightarrow\left[{}\begin{matrix}sinx-cosx=0\\2cosx+1=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}sin\left(x-\frac{\pi}{4}\right)=0\\cosx=-\frac{1}{2}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+k\pi\\x=\pm\frac{2\pi}{3}+k2\pi\end{matrix}\right.\) c/ \(\Leftrightarrow\sqrt{3}sin3x-cos3x=sin2x-\sqrt{3}cos2x\) \(\Leftrightarrow\frac{\sqrt{3}}{2}sin3x-\frac{1}{2}cos3x=\frac{1}{2}sin2x-\frac{\sqrt{3}}{2}cos2x\) \(\Leftrightarrow sin\left(3x-\frac{\pi}{6}\right)=sin\left(2x-\frac{\pi}{3}\right)\) \(\Leftrightarrow\left[{}\begin{matrix}3x-\frac{\pi}{6}=2x-\frac{\pi}{3}+k2\pi\\3x-\frac{\pi}{6}=\pi-2x+\frac{\pi}{3}+k2\pi\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-\frac{\pi}{6}+k2\pi\\x=\frac{3\pi}{10}+\frac{k2\pi}{5}\end{matrix}\right.\) e/ \(\Leftrightarrow\frac{1}{2}sin8x-\frac{\sqrt{3}}{2}cos8x=\frac{\sqrt{3}}{2}sin6x+\frac{1}{2}cos6x\) \(\Leftrightarrow sin\left(8x-\frac{\pi}{3}\right)=sin\left(6x+\frac{\pi}{6}\right)\) \(\Rightarrow\left[{}\begin{matrix}8x-\frac{\pi}{3}=6x+\frac{\pi}{6}+k2\pi\\8x-\frac{\pi}{3}=\pi-6x-\frac{\pi}{6}+k2\pi\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+k\pi\\x=\frac{\pi}{28}+\frac{k\pi}{7}\end{matrix}\right.\) 7. ĐKXĐ: \(\left\{{}\begin{matrix}sin\left(\frac{\pi}{4}-x\right).sin\left(\frac{\pi}{4}+x\right)\ne0\\cos\left(\frac{\pi}{4}-x\right)cos\left(\frac{\pi}{4}+x\right)\ne0\end{matrix}\right.\) \(\Leftrightarrow cos2x\ne0\) Phương trình tương đương: \(\Leftrightarrow\frac{sin^42x+cos^42x}{tan\left(\frac{\pi}{4}-x\right).cot\left(\frac{\pi}{2}-\frac{\pi}{4}-x\right)}=cos^44x\) \(\Leftrightarrow\frac{sin^42x+cos^42x}{tan\left(\frac{\pi}{4}-x\right).cot\left(\frac{\pi}{4}-x\right)}=cos^24x\) \(\Leftrightarrow sin^42x+cos^42x=cos^44x\) \(\Leftrightarrow\left(sin^22x+cos^22x\right)^2-2sin^22x.cos^22x=cos^44x\) \(\Leftrightarrow1-\frac{1}{2}sin^24x=cos^44x\) \(\Leftrightarrow2-\left(1-cos^24x\right)=2cos^44x\) \(\Leftrightarrow2cos^44x-cos^24x-1=0\) \(\Leftrightarrow\left(cos^24x-1\right)\left(2cos^24x+1\right)=0\) \(\Leftrightarrow cos^24x-1=0\) \(\Leftrightarrow sin^24x=0\Leftrightarrow sin4x=0\) \(\Leftrightarrow2sin2x.cos2x=0\Leftrightarrow sin2x=0\) \(\Leftrightarrow x=\frac{k\pi}{2}\) 1. \(cos2x+5=2\left(2-cosx\right)\left(sinx-cosx\right)\) \(\Leftrightarrow2cos^2x+4=4sinx-4cosx-2sinx.cosx+2cos^2x\) \(\Leftrightarrow2sinx.cosx-4\left(sinx-cosx\right)+4=0\) Đặt \(sinx-cosx=t\Rightarrow\left\{{}\begin{matrix}\left|t\right|\le\sqrt{2}\\2sinx.cosx=1-t^2\end{matrix}\right.\) Pt trở thành: \(1-t^2-4t+4=0\) \(\Leftrightarrow t^2+4t-5=0\Leftrightarrow\left[{}\begin{matrix}t=1\\t=-5\left(l\right)\end{matrix}\right.\) \(\Leftrightarrow\sqrt{2}sin\left(x-\frac{\pi}{4}\right)=1\) \(\Leftrightarrow\left[{}\begin{matrix}x-\frac{\pi}{4}=\frac{\pi}{4}+k2\pi\\x-\frac{\pi}{4}=\frac{3\pi}{4}+k2\pi\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k2\pi\\x=\pi+k2\pi\end{matrix}\right.\) 3. \(4sinx.cosx-2sinx+1-2cosx=0\) \(\Leftrightarrow2sinx\left(2cosx-1\right)-\left(2cosx-1\right)=0\) \(\Leftrightarrow\left(2sinx-1\right)\left(2cosx-1\right)=0\) \(\Leftrightarrow\left[{}\begin{matrix}sinx=\frac{1}{2}\\cosx=\frac{1}{2}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{6}+k2\pi\\x=\frac{5\pi}{6}+k2\pi\\x=\pm\frac{\pi}{3}+k2\pi\end{matrix}\right.\) 4. \(cosx-sinx=t\Rightarrow\left[{}\begin{matrix}\left|t\right|\le\sqrt{2}\\-4sinx.cosx=2t^2-2\end{matrix}\right.\) Pt trở thành: \(t+2t^2-2-1=0\Leftrightarrow2t^2+t-3=0\Rightarrow\left[{}\begin{matrix}t=1\\t=-\frac{3}{2}< -\sqrt{2}\left(l\right)\end{matrix}\right.\) \(\Rightarrow\sqrt{2}cos\left(x+\frac{\pi}{4}\right)=-1\) \(\Leftrightarrow cos\left(x+\frac{\pi}{4}\right)=-\frac{\sqrt{2}}{2}\) \(\Leftrightarrow\left[{}\begin{matrix}x+\frac{\pi}{4}=\frac{3\pi}{4}+k2\pi\\x+\frac{\pi}{4}=-\frac{3\pi}{4}+k2\pi\end{matrix}\right.\) \(\Leftrightarrow...\) 5. \(\frac{\sqrt{3}}{2}sin2x+\frac{1}{2}cos2x=sinx\) \(\Leftrightarrow sin\left(2x+\frac{\pi}{6}\right)=sinx\) \(\Leftrightarrow\left[{}\begin{matrix}2x+\frac{\pi}{6}=x+k2\pi\\2x+\frac{\pi}{6}=\pi-x+k2\pi\end{matrix}\right.\) \(\Leftrightarrow...\) 6. \(9sin^2x-5\left(1-sin^2x\right)-5sinx+4=0\) \(\Leftrightarrow14sin^2x-5sinx-1=0\) \(\Leftrightarrow\left[{}\begin{matrix}sinx=\frac{1}{2}\\sinx=-\frac{1}{7}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{6}+k2\pi\\x=\frac{5\pi}{6}+k2\pi\\x=arcsin\left(-\frac{1}{7}\right)+k2\pi\\x=\pi-arcsin\left(-\frac{1}{7}\right)+k2\pi\end{matrix}\right.\) e/ ĐKXĐ: ... \(\Leftrightarrow\frac{2sin4x.cos2x}{cos2x}-2cos4x=2\sqrt{2}\) \(\Leftrightarrow2sin4x-2cos4x=2\sqrt{2}\) \(\Leftrightarrow sin4x-cos4x=\sqrt{2}\) \(\Leftrightarrow\sqrt{2}sin\left(4x-\frac{\pi}{4}\right)=\sqrt{2}\) \(\Leftrightarrow sin\left(4x-\frac{\pi}{4}\right)=1\) \(\Leftrightarrow4x-\frac{\pi}{4}=\frac{\pi}{2}+k2\pi\) \(\Rightarrow x=\frac{3\pi}{16}+\frac{k\pi}{2}\) d/ Đặt \(sin2x-cos2x=\sqrt{2}sin\left(2x-\frac{\pi}{4}\right)=t\Rightarrow\left|t\right|\le\sqrt{2}\) \(\Rightarrow t^2-3t-4=0\Rightarrow\left[{}\begin{matrix}t=-1\\t=4\left(l\right)\end{matrix}\right.\) \(\Rightarrow\sqrt{2}sin\left(2x-\frac{\pi}{4}\right)=-1\) \(\Leftrightarrow sin\left(2x-\frac{\pi}{4}\right)=-\frac{\sqrt{2}}{2}\) \(\Leftrightarrow\left[{}\begin{matrix}2x-\frac{\pi}{4}=-\frac{\pi}{4}+k2\pi\\2x-\frac{\pi}{4}=\frac{5\pi}{4}+k2\pi\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=k\pi\\x=\frac{3\pi}{4}+k\pi\end{matrix}\right.\)
Bạn tham khảo pt 1 hộ mình nha. Chúc bạn học tốt~