Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Viết các biểu thức dưới dạng lập phương của một tổng (các bài 95, 96)
Bài 95:
\(u^3+v^3+3u^2v+3uv^2\)
\(=\left(u+v\right)^3.\)
\(27y^3+9y^2+y+\frac{1}{27}\)
\(=\left(3y\right)^3+3.\left(3y\right)^2.\frac{1}{3}+3.3y.\left(\frac{1}{3}\right)^2+\left(\frac{1}{3}\right)^3\)
\(=\left(3y+\frac{1}{3}\right)^3.\)
Mình chỉ làm thế thôi nhé.
Chúc bạn học tốt!
Bài 92 : \(\left(2x+yz\right)^3=8x^3+12x^2yz+6xy^2z^2+y^3z^3\)
Bài 93 : \(\left(2xy^2+\frac{1}{2}y^3\right)^3=8x^3y^6+6x^2y^7+\frac{3}{2}xy^8+\frac{1}{8}y^9\)
Bài 94 : \(\left(4xy^2+x^3y^3\right)^3=64x^3y^6+48x^5y^5+12x^7y^4+x^9y^3\)
Bài 95 : \(\left(u+v\right)^3=u^3+3u^2v+3uv^2+v^3\)
Bài 96 : \(\left(3y+\frac{1}{3}\right)^3=27y^3+9y^2+y+\frac{1}{27}\)
Bài 97 :
Ta có : \(x\left(x-3y\right)^2+y\left(y-3x\right)^2\)
= \(x\left(x^2-6xy+9y^2\right)+y\left(y^2-6xy+9x^2\right)\)
= \(x^3-6x^2y+9xy^2+y^3-6xy^2+9x^2y\)
= \(x^3+y^3+3xy\left(-2x+3y-2y+3x\right)\)
= \(x^3+y^3+3xy\left(x+y\right)\)
= \(x^3+3x^2y+3xy^2+y^3\) = \(\left(x+y\right)^3\) ( ĐPCM )
Bài 98 :
Ta có : \(x^3+y^3+3xy\left(x+y\right)\)
= \(x^3+3x^2y+3xy^2+y^3\) = \(\left(x+y\right)^3\) ( ĐPCM )
Bài 99 :
Ta có : \(\left(a+b+c\right)^3=3\left(a+b\right)\left(b+c\right)\left(c+a\right)+a^3+b^3+c^3\) ( Chứng minh theo nhị thức newton hoặc giải \(\left(a+b+c\right)^3\) )
=> \(\left(a+b+c\right)^3-a^3-b^3-c^3=3\left(a+b\right)\left(b+c\right)\left(c+a\right)\) ( Chuyển vế )


\(\left(2x-6\right)\left(x^2+2\right)=\left(2x-6\right)\left(8x-10\right)\)
\(\Leftrightarrow\left(2x-6\right)\left(x^2+2\right)-\left(2x-6\right)\left(8x-10\right)=0\)
\(\Leftrightarrow\left(2x-6\right)\left(x^2+2-8x+10\right)=0\)
\(\Leftrightarrow2\left(x-3\right)\left(x^2-6x-2x-12\right)=0\)
\(\Leftrightarrow2\left(x-3\right)\left(x-6\right)\left(x-2\right)=0\)
\(\Rightarrow x\in\left\{3;6;2\right\}\)
\(\left(5x-1\right)^2=\left(3x+5\right)^2\)
\(\Leftrightarrow\left(5x-1\right)^2-\left(3x+5\right)^2=0\)
\(\Leftrightarrow\left(5x-1-3x-5\right)\left(5x-1+3x+5\right)=0\)
\(\Leftrightarrow\left(2x-6\right)\left(8x+4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x-6=0\\8x+4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\\x=\frac{-1}{2}\end{cases}}}\)

\(\left(x+4\right)\left(x^2-4x+16\right)-x\left(x-4\right)^2=8\left(x-3\right)\left(x+3\right)\)3)
\(\Leftrightarrow x^3+4^3-x\left(x-4\right)^2=8\left(x^2-3^2\right)\)
\(\Leftrightarrow x^3+64-x\left(x^2-8x+16\right)=8x^2-72\)
\(\Leftrightarrow x^3+64-x^3+8x^2-16x-8x^2-72=0\)
\(\Leftrightarrow-16x-8=0\)
\(\Leftrightarrow-8\left(2x-1\right)=0 \)
\(\Rightarrow2x-1=0\)
\(\Leftrightarrow2x=1\)
\(\Leftrightarrow x=\frac{1}{2}\)
Vậy \(x=\frac{1}{2}\)

Tập xác định của phương trình
2
Rút gọn thừa số chung
3
Biệt thức
4
Biệt thức
5
Nghiệm
\(\frac{\left(x^2-8\right)}{92}-1+\frac{\left(x^2-7\right)}{93}-1=\frac{\left(x^2-6\right)}{94}-1+\frac{\left(x^2-5\right)}{95}-1\)
\(\Rightarrow\frac{\left(x^2-100\right)}{92}+\frac{\left(x^2-100\right)}{93}-\frac{\left(x^2-100\right)}{94}-\frac{\left(x^2-100\right)}{95}=0\)
\(\Rightarrow\left(x^2-100\right)\left(\frac{1}{92}+\frac{1}{93}+\frac{1}{94}+\frac{1}{95}\right)=0\)
\(\Rightarrow x^2-100=0\)(vi \(\left(\frac{1}{92}+\frac{1}{93}+\frac{1}{94}+\frac{1}{95}\right)\ne0\)
\(\Rightarrow x=\pm10\)
\(\frac{x^2-8}{92}+\frac{x^2-7}{93}=\frac{x^2-6}{94}+\frac{x^2-5}{95}\)
\(\Leftrightarrow\left(\frac{x^2-8}{92}-1\right)+\left(\frac{x^2-7}{93}-1\right)=\left(\frac{x^2-6}{94}-1\right)+\left(\frac{x^2-5}{95}-1\right)\)
\(\Leftrightarrow\frac{x^2-100}{92}+\frac{x^2-100}{93}-\frac{x^2-100}{94}-\frac{x^2-100}{95}=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-10=0\\x+10=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=10\\x=-10\end{cases}}}\)
V...