\(\frac11+\frac{1}{1+2}+\frac{1}{1+2+3}+\cdots+\frac{1}{1+...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

S
13 tháng 8

\(A=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\cdots+\frac{1}{2023\cdot2024}\)

\(=\frac11-\frac12+\frac12-\frac13+\cdots+\frac{1}{2023}-\frac{1}{2024}\)

\(=\frac11-\frac{1}{2024}=\frac{2023}{2024}\)

13 tháng 8

A=1⋅21+2⋅31+3⋅41+⋯+2023⋅20241

\(= \frac{1}{1} - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + \hdots + \frac{1}{2023} - \frac{1}{2024}\)

\(= \frac{1}{1} - \frac{1}{2024} = \frac{2023}{2024}\)

21 tháng 8

ta nhận xét rằng mỗi số hạng trong tổng \(M\) đều là số dương. Do đó, \(M > 0\).

Áp dụng bất đẳng thức này cho từng số hạng của \(M\), ta có: \(M = \sum_{k = 1}^{2025} \frac{k}{\left(\right. k + 1 \left.\right)^{3}} < \sum_{k = 1}^{2025} \frac{1}{\left(\right. k + 1 \left.\right)^{2}}\)

Đặt \(j = k + 1\). Khi \(k = 1\) thì \(j = 2\), và khi \(k = 2025\) thì \(j = 2026\). Do đó, \(\sum_{k = 1}^{2025} \frac{1}{\left(\right. k + 1 \left.\right)^{2}} = \sum_{j = 2}^{2026} \frac{1}{j^{2}}\).

Giá trị của \(\pi \approx 3.14159\), nên \(\pi^{2} \approx 9.8696\). \(\frac{\pi^{2}}{6} \approx \frac{9.8696}{6} \approx 1.6449\). Vậy \(\sum_{j = 2}^{2026} \frac{1}{j^{2}} < 1.6449 - 1 = 0.6449\).

Do đó, \(M < 0.6449\).

\(=\frac{1}{2^{3}}+\frac{2}{3^{3}}+\frac{3}{4^{3}}+...+\frac{2025}{202 6^{3}}\) \(M > \frac{1}{2^{3}} = \frac{1}{8} = 0.125\)

Ta có \(0.125 < M < 0.6449\). Vì \(M\) nằm trong khoảng \(\left(\right. 0.125 , 0.6449 \left.\right)\), nên \(M\) không thể là một số tự nhiên

Do đó, giá trị của \(M\) không phải là số tự nhiên.

đây mik cx ko chắc chắn lắm


S
9 tháng 3

\(a;\dfrac{3}{2}x-\dfrac{2}{3}=\dfrac{2}{3}:\dfrac{3}{2}\\ \dfrac{3}{2}x-\dfrac{2}{3}=\dfrac{4}{9}\\ \dfrac{3}{2}x=\dfrac{4}{9}+\dfrac{2}{3}=\dfrac{10}{9}\\ x=\dfrac{10}{9}:\dfrac{3}{2}=\dfrac{20}{27}\\ b;\left(\dfrac{9}{11}-x\right):\left(-\dfrac{10}{11}\right)=1-\dfrac{4}{5}\\ \left(\dfrac{9}{11}-x\right):\left(-\dfrac{10}{11}\right)=\dfrac{1}{5}\\ \dfrac{9}{11}-x=\dfrac{1}{5}\cdot\left(-\dfrac{10}{11}\right)\\ \dfrac{9}{11}-x=-\dfrac{2}{11}\\ x=\dfrac{9}{11}-\left(-\dfrac{2}{11}\right)=\dfrac{9}{11}+\dfrac{2}{11}\\ x=1\\ c;-\dfrac{11}{12}x+\dfrac{3}{4}=-\dfrac{1}{6}\\ -\dfrac{11}{12}x=-\dfrac{1}{6}-\dfrac{3}{4}\\ -\dfrac{11}{12}x=-\dfrac{11}{12}\\ x=\left(-\dfrac{11}{12}\right):\left(-\dfrac{11}{12}\right)=1\)

\(d;-\dfrac{5}{4}-\left(1\dfrac{1}{2}+x\right)=4,5\\ \Leftrightarrow-\dfrac{5}{4}-\left(\dfrac{3}{2}+x\right)=4,5\\\dfrac{3}{2}+x=-\dfrac{5}{4}-4,5\\ \dfrac{3}{2}+x=-\dfrac{23}{4}\\ x=-\dfrac{23}{4}-\dfrac{3}{2}\\ x=-\dfrac{29}{4}\\ đ;\left(\dfrac{3}{4}-x:\dfrac{2}{15}\right)\cdot\dfrac{1}{5}=-2,6\\ \dfrac{3}{4}-x:\dfrac{2}{15}=-2,6:\dfrac{1}{5}\\ \dfrac{3}{4}-x:\dfrac{2}{15}=-13\\ x:\dfrac{2}{15}=\dfrac{3}{4}-\left(-13\right)\\ x:\dfrac{2}{15}=\dfrac{55}{4}\\ x=\dfrac{55}{4}\cdot\dfrac{2}{15}=\dfrac{11}{6}\\ e;3-\left(\dfrac{1}{6}-x\right)\cdot\dfrac{2}{3}=\dfrac{2}{3}\\ \left(\dfrac{1}{6}-x\right)\cdot\dfrac{2}{3}=3-\dfrac{2}{3}\\ \left(\dfrac{1}{6}-x\right)\cdot\dfrac{2}{3}=\dfrac{7}{3}\\ \dfrac{1}{6}-x=\dfrac{7}{3}:\dfrac{2}{3}=\dfrac{7}{2}\\ x=\dfrac{1}{6}-\dfrac{7}{2}=-\dfrac{10}{3}\)

\(f;\left(1-2x\right)\cdot\dfrac{4}{5}=\left(-2\right)^3\\ \left(1-2x\right)\cdot\dfrac{4}{5}=-8\\ 1-2x=-8:\dfrac{4}{5}=-10\\ 2x=1-\left(-10\right)=11\\ x=\dfrac{11}{2}\\ g;\dfrac{1}{6}-\left|\dfrac{1}{2}x-\dfrac{1}{3}\right|=\dfrac{1}{8}\\ \left|\dfrac{1}{2}x-\dfrac{1}{3}\right|=\dfrac{1}{6}-\dfrac{1}{8}=\dfrac{1}{24}\\ \Rightarrow\left[{}\begin{matrix}\dfrac{1}{2}x-\dfrac{1}{3}=\dfrac{1}{24}\Rightarrow x=\dfrac{3}{4}\\\dfrac{1}{2}x-\dfrac{1}{3}=-\dfrac{1}{24}\Rightarrow x=\dfrac{7}{12}\end{matrix}\right.\)

26 tháng 6 2017

\(\frac{3}{2}x-\frac{2}{3}=\frac{2}{3}:\frac{3}{2}\)

\(\frac{3}{2}x-\frac{2}{3}=\frac{4}{9}\)

\(\frac{3}{2}x=\frac{4}{9}+\frac{2}{3}\)

\(\frac{3}{2}x=\frac{10}{9}\)

\(x=\frac{10}{9}:\frac{3}{2}\)

\(x=\frac{20}{27}\)

Vậy x=\(\frac{20}{27}\)

\(\left(\frac{9}{11}-x\right):\frac{-10}{11}=1-\frac{4}{5}\)

\(\left(\frac{9}{11}-x\right):\frac{-10}{11}=\frac{1}{5}\)

\(\frac{9}{11}-x=\frac{1}{5}\cdot\frac{-10}{11}\)

\(\frac{9}{11}-x=\frac{-2}{11}\)

\(x=\frac{9}{11}-\frac{-2}{11}\)

\(x=1\)

Vậy x=1

\(\frac{-11}{12}\cdot x+\frac{3}{4}=\frac{-1}{6}\)

\(\frac{-11}{12}\cdot x=\frac{-1}{6}-\frac{3}{4}\)

\(\frac{-11}{12}\cdot x=\frac{21}{12}\)

\(x=\frac{-21}{11}\)

Vậy x=\(\frac{-21}{11}\)

\(\frac{-5}{4}-\left(1\frac{1}{2}+x\right)=4,5\)

\(\frac{3}{2}+x=\frac{-5}{4}-\frac{9}{2}\)

\(\frac{3}{2}+x=\frac{23}{4}\)

\(x=\frac{17}{4}\)

Vậy x=\(\frac{17}{4}\)

\(\left(\frac{3}{4}-x:\frac{2}{15}\right)\cdot\frac{1}{5}=-2,6\)

\(\frac{3}{4}-x:\frac{2}{15}=\frac{-13}{5}:\frac{1}{5}\)

\(\frac{3}{4}-x:\frac{2}{15}=-13\)

\(x:\frac{2}{15}=\frac{3}{4}-\left(-13\right)\)

\(x:\frac{2}{15}=\frac{45}{4}\)

\(x=\frac{3}{2}\)

Vậy x=\(\frac{3}{2}\)

\(3-\left(\frac{1}{6}-x\right)\cdot\frac{2}{3}=\frac{2}{3}\)

\(3-\left(\frac{1}{6}-x\right)=\frac{2}{3}:\frac{2}{3}\)

\(3-\left(\frac{1}{6}-x\right)=1\)

\(\frac{1}{6}-x=2\)

\(x=\frac{1}{6}-2\)

\(x=\frac{-11}{6}\)

Vậy x=\(\frac{-11}{6}\)

\(\left(1-2x\right)\cdot\frac{4}{5}=\left(-2\right)^3\)

\(1-2x=\frac{-1}{10}\)

\(2x=1-\frac{-1}{10}\)

\(2x=\frac{11}{10}\)

\(x=\frac{11}{20}\)

Vậy x=\(\frac{11}{20}\)

\(\frac{1}{6}-\left|\frac{1}{2}\cdot x-\frac{1}{3}\right|=\frac{1}{8}\)

\(\left|\frac{1}{2}\cdot x-\frac{1}{3}\right|=\frac{7}{12}\)

\(\Rightarrow\frac{1}{2}x-\frac{1}{3}=\frac{7}{12}\)                                                         \(\frac{1}{2}x-\frac{1}{3}=\frac{-7}{12}\)

\(\frac{1}{2}x=\frac{11}{12}\)                                                                        \(\frac{1}{2}x=\frac{-1}{4}\)

\(x=\frac{11}{6}\)                                                                              \(x=\frac{-1}{2}\)

Vậy \(x\in\left\{\frac{11}{6};\frac{-1}{2}\right\}\)

26 tháng 6 2017

\(\frac{3}{2}x-\frac{2}{3}=\frac{2}{3}:\frac{3}{2}\)

\(\frac{3}{2}x=\frac{4}{9}+\frac{6}{9}\)

\(\frac{3}{2}x=\frac{10}{9}\)

\(x=\frac{10}{9}:\frac{3}{2}\)

\(x=\frac{20}{27}\)

tk mình đi mình làm nốt cho hjhj ^^

1 tháng 7 2018

Sửa đề : \(\frac{1}{21}+\frac{1}{28}+\frac{1}{36}+...+\frac{2}{x\left(x+1\right)}=\frac{2}{9}\)

\(\Leftrightarrow\)\(\frac{2}{42}+\frac{2}{56}+\frac{2}{72}+...+\frac{2}{x\left(x+1\right)}=\frac{2}{9}\)

\(\Leftrightarrow\)\(2\left(\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2}{9}\)

\(\Leftrightarrow\)\(2\left(\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2}{9}\)

\(\Leftrightarrow\)\(2\left(\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2}{9}\)

\(\Leftrightarrow\)\(2\left(\frac{1}{6}-\frac{1}{x+1}\right)=\frac{2}{9}\)

\(\Leftrightarrow\)\(\frac{1}{6}-\frac{1}{x+1}=\frac{2}{9}.\frac{1}{2}\)

\(\Leftrightarrow\)\(\frac{1}{6}-\frac{1}{x+1}=\frac{1}{9}\)

\(\Leftrightarrow\)\(\frac{1}{x+1}=\frac{1}{6}-\frac{1}{9}\)

\(\Leftrightarrow\)\(\frac{1}{x+1}=\frac{1}{18}\)

\(\Leftrightarrow\)\(x+1=18\)

\(\Leftrightarrow\)\(x=18-1\)

\(\Leftrightarrow\)\(x=17\)

Vậy \(x=17\)

Chúc bạn học tốt ~ 

1 tháng 7 2018

\(x-\frac{20}{11.13}-\frac{20}{13.15}-\frac{20}{15.17}-...-\frac{20}{53.55}=\frac{3}{11}\)

\(\Leftrightarrow\)\(x+10\left(\frac{2}{11.13}+\frac{2}{13.15}+\frac{2}{15.17}+...+\frac{2}{53.55}\right)=\frac{3}{11}\)

\(\Leftrightarrow\)\(x+10\left(\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}+\frac{1}{15}-\frac{1}{17}+...+\frac{1}{53}-\frac{1}{55}\right)=\frac{3}{11}\)

\(\Leftrightarrow\)\(x+10\left(\frac{1}{11}-\frac{1}{55}\right)=\frac{3}{11}\)

\(\Leftrightarrow\)\(x+10.\frac{4}{55}=\frac{3}{11}\)

\(\Leftrightarrow\)\(x+\frac{40}{55}=\frac{3}{11}\)

\(\Leftrightarrow\)\(x=\frac{3}{11}-\frac{40}{55}\)

\(\Leftrightarrow\)\(x=\frac{-5}{11}\)

Vậy \(x=\frac{-5}{11}\)

Chúc bạn học tốt ~