
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


5x-2>2(x+3)\(\Leftrightarrow\)5x-2>2x+6
\(\Leftrightarrow\) 5x-2x>6+2
\(\Leftrightarrow\)3x>8
\(\Leftrightarrow\)x>\(\dfrac{8}{3}\)
0 8/3
Chúc bn học tốt❤

\(\left(\frac{1}{x-1}+\frac{1}{x-4}\right)-\left(\frac{1}{x-2}+\frac{1}{x-3}\right)=0\)
\(\Leftrightarrow\frac{x-4+x-1}{\left(x-1\right).\left(x-4\right)}-\frac{x-3-x-2}{\left(x-2\right).\left(x-3\right)}=0\)
\(\Leftrightarrow\frac{2x-5}{x^2-5x+4}-\frac{2x-5}{x^2-5x+6}=0\)
\(\Leftrightarrow\left(2x-5\right).\left(\frac{1}{x^2-5x+4}-\frac{1}{x^2-5x+6}=0\right)\)
\(\Leftrightarrow\orbr{\begin{cases}2x-5=0\\\frac{1}{x^2-5x+4}-\frac{1}{x^2-5x+6}=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{2}\\x^2-5x+4=x^2-5x+6\left(loai\right)\end{cases}}}\)
Vậy..

\(\sqrt{x+5}=1+\sqrt{x}\)
ĐKXĐ : \(x\ge0\)
\(pt\Leftrightarrow x+5=\left(1+\sqrt{x}\right)^2\)
\(\Leftrightarrow x+5=x+2\sqrt{x}+1\)
\(\Leftrightarrow x+5-x-2\sqrt{x}-1=0\)
\(\Leftrightarrow-2\sqrt{x}+4=0\)
\(\Leftrightarrow\sqrt{x}=2\Rightarrow x=4\)(TMĐKXĐ)

a, \(\Leftrightarrow\left(x+1+x-2\right)\left[\left(x+1\right)^2-\left(x+1\right)\left(x-2\right)+\left(x-2\right)^2\right]-\left(2x-1\right)^3=0\)
\(\Leftrightarrow\left(2x-1\right)\left(x^2+2x+1-x^2+x+2+x^2-4x+4\right)-\left(2x-1\right)^3=0\)
\(\Leftrightarrow\left(2x-1\right)\left(x^2-x+7-\left(2x-1\right)^2\right)=0\)
\(\Leftrightarrow\left(2x-1\right)\left(x^2-x+7-4x^2+4x-1\right)=0\)
\(\Leftrightarrow\left(2x-1\right)\left(-3x^2+3x+6\right)=0\)
\(\Leftrightarrow-3\left(2x-1\right)\left(x^2-x-2\right)=0\)
\(\Leftrightarrow\left(2x-1\right)\left(x+1\right)\left(x-2\right)=0\)
=>x=1/2 hoặc x=-1 hoặc x=2
Vậy pt có tập nghiệm là S={1/2;-1;2}
b, \(x^4=24x+32\Leftrightarrow x^4-24x-32=0\)
\(\Leftrightarrow x^4-2x^3-4x^2+2x^3-4x^2-8x+8x^2-16x-32=0\)
\(\Leftrightarrow x^2\left(x^2-2x-4\right)+2x\left(x^2-2x-4\right)+8\left(x^2-2x-4\right)=0\)
\(\Leftrightarrow\left(x^2-2x-4\right)\left(x^2+2x+8\right)=0\)
\(\Leftrightarrow x^2-2x-4=0\) (vì x^2+2x+8 > 0)
\(\Leftrightarrow\left(x-1\right)^2-5=0\Leftrightarrow\left(x-1\right)^2=5\Leftrightarrow x-1=\pm\sqrt{5}\Leftrightarrow x=1\pm\sqrt{5}\)
Vậy...
c, \(\left(x-6\right)^4+\left(x-8\right)^4=16\)
Đặt x-6=t => x-8=t-2
Ta có: \(t^4+\left(t-2\right)^4=16\Leftrightarrow t^4+t^4-8t^3+24t^2-32t+16=16\)
\(\Leftrightarrow2t^4-8t^3+24t^2-32t=0\Leftrightarrow t^4-4t^3+12t^2-16t=0\)
\(\Leftrightarrow t^4-2t^3-2t^3+4t^2+8t^2-16t=0\)
\(\Leftrightarrow t^3\left(t-2\right)-2t^2\left(t-2\right)+8t\left(t-2\right)=0\)
\(\Leftrightarrow\left(t-2\right)\left(t^3-2t^2+8t\right)=0\Leftrightarrow\left(t-2\right)t\left(t^2-2t+8\right)=0\)
Mà t^2-2t+8=(t-1)^2+7 > 0
\(\Rightarrow\orbr{\begin{cases}t-2=0\\t=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x-6-2=0\\x-6=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=8\\x=6\end{cases}}}\)
Vậy...

\(ĐKXĐ:x\ne2;x\ne4\)
\(\frac{x-3}{x-2}-\frac{x-2}{x-4}=3\frac{1}{5}\)
\(\Rightarrow\frac{\left(x-3\right)\left(x-4\right)-\left(x-2\right)^2}{\left(x-2\right)\left(x-4\right)}=\frac{16}{5}\)
\(\Rightarrow\frac{x^2-7x+12-x^2+4x-4}{x^2-6x+8}=\frac{16}{5}\)
\(\Rightarrow\frac{-3x+8}{x^2-6x+8}=\frac{16}{5}\)
\(\Rightarrow-3x+8=\frac{16}{5}\left(x^2-6x+8\right)\)
\(\Rightarrow-3x+8=\frac{16}{5}x^2-\frac{96}{5}x+\frac{128}{5}\)
\(\Rightarrow\frac{16}{5}x^2-\frac{81}{5}x+\frac{88}{5}=0\)
Ta có \(\Delta=\frac{81^2}{5^2}-4.\frac{16}{5}.\frac{88}{5}=\frac{929}{25},\sqrt{\Delta}=\frac{\sqrt{929}}{5}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{81+\sqrt{929}}{32}\\x=\frac{81-\sqrt{929}}{32}\end{cases}}\)


\(x^4+3x^2+x^3+2x+2=0\)
\(\Leftrightarrow x^4+x^3+x^2+2x^2+2x+2=0\)
\(\Leftrightarrow\left(x^2+1\right)\left(x^2+x+1\right)=0\)
Do 2 thừa số ở VT đều > 0
\(\Rightarrow\) PTVN
\(x^4+x^3+3x^2+2x+2=0\\ \Leftrightarrow x^4+x^3+x^2+2x^2+2x+2=0\\ \Leftrightarrow x^2\left(x^2+x+1\right)+2\left(x^2+x+1\right)=0\\ \Leftrightarrow\left(x^2+x+1\right)\left(x^2+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x^2+x+1=0\left(VN\right)\\x^2+2=0\left(VN\right)\end{matrix}\right.\)
Vậy phương trình vô nghiệm
Cái này phải bạn tự biểu diễn trên trục số cho dễ hiểu nhé:
Xét TH1: \(x\le-5\) thì:
\(-x-5+3\left(2-x\right)=x+4\Leftrightarrow-5x=3\)
\(\Leftrightarrow x=\dfrac{-5}{3}>-5\left(loại\right)\)
Xét TH2:\(-5\le x\le2\) thì
\(x+5+3\left(2-x\right)=x-4\Leftrightarrow-3x=-15\)
\(\Leftrightarrow x=5>2\left(loại\right)\)
Xét TH3: \(x\ge2\) thì
\(x+5+3\left(x-2\right)=x+4\Leftrightarrow3x=5\)
\(x=\dfrac{5}{3}< 2\left(loại\right)\)
Vậy pt vô nghiệm
\(\left|x+5\right|+3\left|x-2\right|=x+4\\ < =>\left[{}\begin{matrix}x+5+3\left(x-2\right)=x+4\\x+5+3\left(x-2\right)=-x-4\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x+5+3x-6=x+4\\x+5+3x-6=-x-4\end{matrix}\right.\\ < =>\left[{}\begin{matrix}3x=5\\5x=-3\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=\dfrac{5}{3}\\x=-\dfrac{3}{5}\end{matrix}\right.\)
vậy ...