\(x^2+\sqrt{x+1}=1\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 1 2017

\(x^2+\sqrt{x+1}=1\)

Đk:\(x\ge-1\)

\(\Leftrightarrow\sqrt{x+1}=1-x^2\left(-1\le x\le1\right)\)

\(\Leftrightarrow x+1=x^4-2x^2+1\)

\(\Leftrightarrow-x^4+2x^2+x=0\)

\(\Leftrightarrow-x\left(x^3-2x-1\right)=0\)

\(\Leftrightarrow-x\left(x+1\right)\left(x^2-x-1\right)=0\)

\(\Leftrightarrow\left[\begin{matrix}x=-1\\x=-\frac{\sqrt{5}-1}{2}\\x=0\end{matrix}\right.\)(thỏa mãn)

16 tháng 10 2016

giúp mình vs mình tick cho !!!

AH
Akai Haruma
Giáo viên
31 tháng 5 2019

Lời giải:
ĐKXĐ: \(x^2\geq 5\)

PT \(\Leftrightarrow (\sqrt{x^2+7}-4)-(\sqrt{x^2-5}-2)=x-3\)

\(\Leftrightarrow \frac{x^2+7-16}{\sqrt{x^2+7}+4}-\frac{x^2-5-4}{\sqrt{x^2-5}+2}=x-3\)

\(\Leftrightarrow \frac{(x-3)(x+3)}{\sqrt{x^2+7}+4}-\frac{(x-3)(x+3)}{\sqrt{x^2-5}+2}=x-3\)

\(\Leftrightarrow (x-3)\left[1+\frac{x+3}{\sqrt{x^2-5}+2}-\frac{x+3}{\sqrt{x^2+7}+4}\right]=0(1)\)

Với \(\forall x^2\geq 5\) thì:

\(\left\{\begin{matrix} x+3>0\\ \sqrt{x^2-5}+2< \sqrt{x^2+7}+4\end{matrix}\right.\Rightarrow \frac{x+3}{\sqrt{x^2-5}+2}>\frac{x+3}{\sqrt{x^2+7}+4}\)

\(\Rightarrow 1+\frac{x+3}{\sqrt{x^2-5}+2}-\frac{x+3}{\sqrt{x^2+7}+4}\neq 0(2)\)

Từ (1);(2) \(\Rightarrow x-3=0\Rightarrow x=3\) (thỏa mãn)

Vậy.......

ĐKXĐ x>=1

Bình phương 2 vế , ta đc(câu này bn ko cần ghi đâu mik ghi cho rõ ràng tí thôi)

x + 3 + 2 √( x+3)(x-1) +x-1 =4

(=) 2√(x+3)(x-1) = 2-2x

(=)√(x2 - x + 3x - 1) = 1-x

ở đây phải có thêm điều kiện x <= 1 để lm tiếp 

=> x2 + 2x - 3 = x2 -2x +1 ( mik đổi chõ luôn )

(=) 4x = 4

=> x=1 ( Tm ĐKXĐ ) cái này phải có nè ko mất điển như chơi

Vậy pt có nghiệm x=1

học tốt

13 tháng 10 2019

dk \(x+9\ge0;x\ge0;x+1>0< =>x\ge0;\)

\(\sqrt{x+9}-\sqrt{x}=\frac{2\sqrt{2}}{\sqrt{x+1}}< =>\frac{9}{\sqrt{x+9}+\sqrt{x}}=\frac{2\sqrt{2}}{\sqrt{x+1}}\)<=> \(9\sqrt{x+1}=2\sqrt{2}\left(\sqrt{x+9}+\sqrt{x}\right)< =>\)\(81\left(x+1\right)=16x+72+16\sqrt{x\left(x+9\right)}\)

<=> \(65x+9=16\sqrt{x\left(x+9\right)}\)<=> 4225x2+1170x+81= 256x2+144x <=> 3969x2+1026x+81=0 (vô nghiệm)