
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Bài 1:
Đặt \(\hept{\begin{cases}S=x+y\\P=xy\end{cases}}\) hpt thành:
\(\hept{\begin{cases}S^2-P=3\\S+P=9\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}S^2-P=3\\S=9-P\end{cases}}\Leftrightarrow\left(9-P\right)^2-P=3\)
\(\Leftrightarrow\orbr{\begin{cases}P=6\Rightarrow S=3\\P=13\Rightarrow S=-4\end{cases}}\).Thay 2 trường hợp S và P vào ta tìm dc
\(\hept{\begin{cases}x=3\\y=0\end{cases}}\)và\(\hept{\begin{cases}x=0\\y=3\end{cases}}\)
Câu 3: ĐK: \(x\ge0\)
Ta thấy \(x-\sqrt{x-1}=0\Rightarrow x=\sqrt{x-1}\Rightarrow x^2-x+1=0\) (Vô lý), vì thế \(x-\sqrt{x-1}\ne0.\)
Khi đó \(pt\Leftrightarrow\frac{3\left[x^2-\left(x-1\right)\right]}{x+\sqrt{x-1}}=x+\sqrt{x-1}\Rightarrow3\left(x-\sqrt{x-1}\right)=x+\sqrt{x-1}\)
\(\Rightarrow2x-4\sqrt{x-1}=0\)
Đặt \(\sqrt{x-1}=t\Rightarrow x=t^2+1\Rightarrow2\left(t^2+1\right)-4t=0\Rightarrow t=1\Rightarrow x=2\left(tm\right)\)

Ta cần giải phương trình:
\(x^{3} + \left(\right. 1 - x^{2} \left.\right)^{3} = x^{2} \left(\right. 1 - x^{2} \left.\right)\)
Bước 1: Đặt ẩn phụ để đơn giản
Đặt:
\(a = x^{3} , b = \left(\right. 1 - x^{2} \left.\right)^{3} , v \overset{ˊ}{\hat{e}} p h ả i = x^{2} \left(\right. 1 - x^{2} \left.\right)\)
Nhưng tốt hơn, ta giải trực tiếp.
Bước 2: Nhớ hằng đẳng thức lập phương
Ta có:
\(\left(\right. a + b \left.\right)^{3} = a^{3} + b^{3} + 3 a b \left(\right. a + b \left.\right)\)
Ở đây không cần mở theo tổng lập phương, mà chỉ cần khai triển:
\(x^{3} + \left(\right. 1 - x^{2} \left.\right)^{3} = x^{2} \left(\right. 1 - x^{2} \left.\right)\)
Khai triển \(\left(\right. 1 - x^{2} \left.\right)^{3}\):
\(\left(\right. 1 - x^{2} \left.\right)^{3} = 1 - 3 x^{2} + 3 x^{4} - x^{6}\)
Khi đó:
\(x^{3} + \left(\right. 1 - x^{2} \left.\right)^{3} = x^{3} + 1 - 3 x^{2} + 3 x^{4} - x^{6}\)
Vế trái là:
\(- x^{6} + 3 x^{4} + x^{3} - 3 x^{2} + 1\)
Vế phải:
\(x^{2} \left(\right. 1 - x^{2} \left.\right) = x^{2} - x^{4}\)
Bước 3: Chuyển vế
\(- x^{6} + 3 x^{4} + x^{3} - 3 x^{2} + 1 - \left(\right. x^{2} - x^{4} \left.\right) = 0\)
Rút gọn:
\(- x^{6} + 3 x^{4} + x^{3} - 3 x^{2} + 1 - x^{2} + x^{4} = 0\)\(- x^{6} + 4 x^{4} + x^{3} - 4 x^{2} + 1 = 0\)
Bước 4: Viết lại phương trình
\(- x^{6} + 4 x^{4} + x^{3} - 4 x^{2} + 1 = 0\)
Ta thử tìm nghiệm nguyên trước.
Bước 5: Thử nghiệm nguyên
Thử \(x = 0\):
\(0 + 0 + 0 + 0 + 1 = 1 \neq 0\)
Thử \(x = 1\):
\(- 1 + 4 + 1 - 4 + 1 = 1 \neq 0\)
Thử \(x = - 1\):
\(- 1 + 4 - 1 - 4 + 1 = - 1 \neq 0\)
Thử \(x = 2\):
\(- 64 + 4 \times 16 + 8 - 16 + 1 = - 64 + 64 + 8 - 16 + 1 = - 7 \neq 0\)
Thử \(x = 3\):
\(- 729 + 4 \times 81 + 27 - 36 + 1 = - 729 + 324 + 27 - 36 + 1 = - 413 \neq 0\)
Bước 6: Thử đặt ẩn phụ
Đặt \(y = x^{2} \Rightarrow x^{3} = x \cdot x^{2} = x \cdot y\)
Phương trình gốc:
\(x^{3} + \left(\right. 1 - x^{2} \left.\right)^{3} = x^{2} \left(\right. 1 - x^{2} \left.\right)\)
Thành:
\(x \cdot y + \left(\right. 1 - y \left.\right)^{3} = y \left(\right. 1 - y \left.\right)\)
Giải phương trình:
\(x \cdot y + \left(\right. 1 - y \left.\right)^{3} = y \left(\right. 1 - y \left.\right) \Rightarrow x \cdot y = y \left(\right. 1 - y \left.\right) - \left(\right. 1 - y \left.\right)^{3}\)
Rút gọn vế phải:
\(\left(\right. 1 - y \left.\right) \left[\right. y - \left(\right. 1 - y \left.\right)^{2} \left]\right. = \left(\right. 1 - y \left.\right) \left[\right. y - \left(\right. 1 - 2 y + y^{2} \left.\right) \left]\right. = \left(\right. 1 - y \left.\right) \left[\right. y - 1 + 2 y - y^{2} \left]\right.\)\(= \left(\right. 1 - y \left.\right) \left[\right. 3 y - 1 - y^{2} \left]\right. = \left(\right. 1 - y \left.\right) \left(\right. - y^{2} + 3 y - 1 \left.\right)\)
Vậy:
\(x \cdot y = \left(\right. 1 - y \left.\right) \left(\right. - y^{2} + 3 y - 1 \left.\right) \Rightarrow x = \frac{\left(\right. 1 - y \left.\right) \left(\right. - y^{2} + 3 y - 1 \left.\right)}{y}\)
Nhưng phương trình này phức tạp và không đơn giản hóa được dễ dàng. Quay lại tìm nghiệm gần đúng hoặc nghiệm đặc biệt.
Bước 7: Dùng phương pháp thử số
Ta có:
\(x^{3} + \left(\right. 1 - x^{2} \left.\right)^{3} = x^{2} \left(\right. 1 - x^{2} \left.\right)\)
Thử \(x = 0.5\):
Vế trái:
\(\left(\right. 0.5 \left.\right)^{3} + \left(\right. 1 - 0.25 \left.\right)^{3} = 0.125 + \left(\right. 0.75 \left.\right)^{3} \approx 0.125 + 0.422 = 0.547\)
Vế phải:
undefined
Dùng máy tính hoặc công cụ giải số, ta tìm được:
- Một nghiệm gần x ≈ 0.328
- Ngoài ra có thể có nghiệm phức
✅ Kết luận:
Phương trình:
\(x^{3} + \left(\right. 1 - x^{2} \left.\right)^{3} = x^{2} \left(\right. 1 - x^{2} \left.\right)\)
Tương đương với:
\(- x^{6} + 4 x^{4} + x^{3} - 4 x^{2} + 1 = 0\)
Không có nghiệm nguyên. Có ít nhất một nghiệm thực xấp xỉ:
\(x \approx 0.328\)

a: x-2y=3
=>2y=x-3
=>\(y=\frac{x-3}{2}\)
Vậy: \(\begin{cases}x\in R\\ y=\frac{x-3}{2}\end{cases}\)
b: 5x(2x-3)=0
=>x(2x-3)=0
=>\(\left[\begin{array}{l}x=0\\ 2x-3=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=0\\ x=\frac32\end{array}\right.\)
c: \(\frac{2}{x}=1\) (ĐKXĐ: x<>0)
=>\(x=\frac22=1\) (nhận)
d: 2x+1>0
=>2x>-1
=>\(x>-\frac12\)

1/ \(x^3-x^2-x=\frac{1}{3}\Leftrightarrow3x^3-3x^2-3x=1\Leftrightarrow x^3+3x^2+3x+1=4x^3\)
\(\Leftrightarrow\left(x+1\right)^3=\left(\sqrt[3]{4}x\right)^3\Leftrightarrow x+1=\sqrt[3]{4}x\Leftrightarrow x\left(\sqrt[3]{4}-1\right)=1\Leftrightarrow x=\frac{1}{\sqrt[3]{4}-1}\)
2/ ĐKXĐ \(x\ge1\)
\(3+\sqrt{x-2\sqrt{x-1}}=2\sqrt{x-2\sqrt{x-1}}\Leftrightarrow3=\sqrt{\left(\sqrt{x-1}-1\right)^2}\Leftrightarrow\left|\sqrt{x-1}-1\right|=3\)
Tới đây xét trường hợp rồi giải :)

ĐK: \(\hept{\begin{cases}\frac{1}{x^3+1}\ge0\\\frac{x^2-x+1}{x+1}\ge0\end{cases}\Leftrightarrow x+1>0\Leftrightarrow x>-1.}\)
Khi đó ta có: \(pt\Leftrightarrow\sqrt{\frac{\left(x+1\right)^2}{\left(x+1\right)\left(x^2-x+1\right)}}-2\sqrt{\frac{x^2-x+1}{x+1}}+1=0\)
\(\Leftrightarrow\sqrt{\frac{x+1}{x^2-x+1}}-2\sqrt{\frac{x^2-x+1}{x+1}}+1=0\)
Đặt \(\sqrt{\frac{x+1}{x^2-x+1}}=a\left(a>0\right)\), ta có \(a-\frac{2}{a}+1=0\Leftrightarrow a^2+a-2=0\Rightarrow a=1.\)
Vậy \(\frac{x+1}{x^2-x+1}=1\Rightarrow x+1=x^2-x+1\Leftrightarrow x^2-2x=0\Rightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}\left(tmđk\right)}\)
cho tam giác ABC vuong tại A có AB<AC và đường cao AH. gọi M,N,P lần lượt là trung điểm của các cạnh BC, CA, AB , biết AH=4,AM=5.cmr các điểm A,H,M,N,P thuộc cùng một đường tròn
Điều kiện: x ≠ 1 2 và x ≠ − 1. Từ phương trình đã cho, ta có: 5 x 2 − 14 x + 8 = 0.
5 x 2 − 14 x + 8 = 0 ⇔ x = 2 hoặc x = 4 5 .