![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(x^2-x-\dfrac{1}{x}+\dfrac{1}{x^2}-10=0\)
\(\Leftrightarrow x^2+\dfrac{1}{x^2}-\left(x+\dfrac{1}{x}\right)-10=0\)
Đặt \(t=x+\dfrac{1}{x}\)
\(\Leftrightarrow t^2-2=x^2+\dfrac{1}{x^2}\)
Thế vào ta dược : \(t^2-t-12=0\)
Tới đây dễ r .
\(t^2-t-12=0\)
\(\Rightarrow t^2-t-\dfrac{1}{4}-\dfrac{47}{4}=0\)
\(\Rightarrow\left(t-\dfrac{1}{2}\right)^2=\dfrac{47}{4}\)
\(\Rightarrow\left(t-\dfrac{1}{2}-\sqrt{\dfrac{47}{4}}\right)\left(t-\dfrac{1}{2}+\sqrt{\dfrac{47}{4}}\right)=0\)
![](https://rs.olm.vn/images/avt/0.png?1311)
ĐK: \(x^2-1\ge0\)
pt <=> \(\left(x^2+2x+1\right)-2\left(x+1\right)\sqrt{x^2-1}+\left(x^2-1\right)-4x^2+4x-1=0\)
<=> \(\left[\left(x+1\right)^2-2\left(x+1\right)\sqrt{x^2-1}+\left(x^2-1\right)\right]-\left(2x-1\right)^2=0\)
<=> \(\left(x+1-\sqrt{x^2-1}\right)^2-\left(2x-1\right)^2=0\)
<=> \(\left(x+1-\sqrt{x^2-1}-2x+1\right)\left(x+1-\sqrt{x^2-1}+2x-1\right)=0\)
Phương trình tích. Dễ rồi đúng ko? Tự làm tiếp nhé!
![](https://rs.olm.vn/images/avt/0.png?1311)
xét x=0 thấy không là nghiệm
xét x khác 0; đặt x=a; \(\frac{x}{x-1}=b;=>\frac{1}{a}+\frac{1}{b}=1< =>a+b=ab.\)
a3+b3+3ab-2=0<=> (a+ b)[(a+b)2- 3ab] + 3ab - 2=0 <=> ab(a2b2- 3ab)+ 3ab- 2=0
<=> (ab)3- 3(ab)2 + 3ab - 2=0 <=> (ab- 1)3 -1 =0 <=> ab- 1 = 1 <=> ab= 2 <=> \(x.\frac{x}{x-1}=2< =>x^2=2x-2< =>x^2-2x+2=0\)(vô nghiệm)
vậy pt vô nghiệm
Giải hệ phương trình:\(\hept{\begin{cases}x^2+4yz+2z=0\\x+2xy+2z^2=0\\2xz+y^2+y+1=0\end{cases}}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(x^4-3x^3+4x^2-3x+1=0\)
Chia cả hai vế với \(x^2\)ta có
\(x^2-3x+4-\frac{3}{x}+\frac{1}{x^2}=0\)
\(\Leftrightarrow\left(x^2+\frac{1}{x^2}\right)-\left(3x+\frac{3}{x}\right)+4=0\)
\(\Leftrightarrow\left(x^2+\frac{1}{x^2}\right)-3.\left(x+\frac{1}{x}\right)+4=0\)
Đặt \(t=x+\frac{1}{x}\left(t>0\right)\) \(\Rightarrow t^2-2=x^2+\frac{1}{x^2}\)
\(t^2-2-3t+4=0\)
\(\Leftrightarrow t^2-3t+2=0\)
\(\Leftrightarrow t^2-t-2t+2=0\)
\(\Leftrightarrow t.\left(t-1\right)-2.\left(t-1\right)=0\)
\(\Leftrightarrow\left(t-1\right).\left(t-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}t-1=0\\t-2=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}t=1\left(TM\right)\\t=2\left(TM\right)\end{cases}}\)
TH1 \(t=1\)\(\Rightarrow x+\frac{1}{x}=1\)
\(\Leftrightarrow\frac{x^2+1}{x}=1\)\(\Leftrightarrow x^2+1=x\)
\(\Leftrightarrow x^2-x+1=0\)
\(\Leftrightarrow\left(x^2-x+\frac{1}{4}\right)+\frac{3}{4}=0\)
\(\Leftrightarrow\left(x-\frac{1}{2}\right)^2+\frac{3}{4}=0\) (Vô nghiệm)
TH2 \(t=2\) \(\Rightarrow x+\frac{1}{x}=2\)
\(\Leftrightarrow\frac{x^2+1}{x}=2\) \(\Leftrightarrow x^2+1=2x\)
\(\Leftrightarrow x^2-2x+1=0\)
\(\Leftrightarrow\left(x-1\right)^2=0\)
\(\Leftrightarrow x-1=0\)
\(\Leftrightarrow x=1\)
Vậy \(x=1\)
Giải hệ phương trình:\(\hept{\begin{cases}x^2+4yz+2z=0\\x+2xy+2z^2=0\\2xz+y^2+y+1=0\end{cases}}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(x^2+\sqrt{x+1}=1\)
Đk:\(x\ge-1\)
\(\Leftrightarrow\sqrt{x+1}=1-x^2\left(-1\le x\le1\right)\)
\(\Leftrightarrow x+1=x^4-2x^2+1\)
\(\Leftrightarrow-x^4+2x^2+x=0\)
\(\Leftrightarrow-x\left(x^3-2x-1\right)=0\)
\(\Leftrightarrow-x\left(x+1\right)\left(x^2-x-1\right)=0\)
\(\Leftrightarrow\left[\begin{matrix}x=-1\\x=-\frac{\sqrt{5}-1}{2}\\x=0\end{matrix}\right.\)(thỏa mãn)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) 2x4 - x3 -2x2 -x +2=0
=> (2x4- 2x3) +(x3-x2) -(x2 -x) -(2x-2)=0
=>(x-1)(2x3+x2-x-2)=0
=>(x-1)2( 2x2+3x+2)=0 ( vì 2x2+3x+2>0)
=> x-1=0 => x =1
x + 1 2 − 1 = 0 ⇔ x + 1 2 = 1 ⇔ x + 1 = 2 ⇔ x = 1
Vậy nghiệm của phương trình là x = 1.