Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Trước hết ta c/m BĐT: \(\left(a+b\right)^2\le2\left(a^2+b^2\right)\)
Thật vây, BĐT tương đương: \(a^2+2ab+b^2\le2a^2+2b^2\)
\(\Leftrightarrow a^2-2ab+b^2\ge0\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng)
Vậy \(\left(a+b\right)^2\le2\left(a^2+b^2\right)\Rightarrow a+b\le\sqrt{2\left(a^2+b^2\right)}\)
Áp dụng:
\(A\le\sqrt{2\left(9-x+x-1\right)}=\sqrt{2.8}=4\)
\(A_{max}=4\)

\(9\left(\sqrt{4x+1}-\sqrt{3x-2}\right)=x+3\)
\(\Leftrightarrow\sqrt{4x+1}-\sqrt{3x-2}=\frac{x+3}{9}\)
\(\Leftrightarrow\frac{x+3}{\sqrt{4x+1}+\sqrt{3x-2}}=\frac{x+3}{9}\)
\(\Leftrightarrow\left(x+3\right)\left(\frac{1}{\sqrt{4x+1}+\sqrt{3x-2}}-\frac{1}{9}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+3=0\\\sqrt{4x+1}+\sqrt{3x-2}=9\end{cases}}\)
Phần còn lại b làm tiếp nhé

cho mình hỏi hai ý đầu thôi, hai ý sau mình giải ra rồi. Thanks Zero ~

Giải:
\(\sqrt{4 x + 1} - \sqrt{3 x - 2} = \frac{x + 3}{5} , x \geq \frac{2}{3}\)
Chuyển vế và bình phương:
\(\sqrt{4 x + 1} = \frac{x + 3}{5} + \sqrt{3 x - 2}\) \(4 x + 1 = \frac{\left(\right. x + 3 \left.\right)^{2}}{25} + 2 \cdot \frac{x + 3}{5} \sqrt{3 x - 2} + \left(\right. 3 x - 2 \left.\right)\)
Đưa hạng chứa căn sang một phía:
\(x + 3 - \frac{\left(\right. x + 3 \left.\right)^{2}}{25} = 2 \cdot \frac{x + 3}{5} \sqrt{3 x - 2}\) \(\frac{\left(\right. x + 3 \left.\right) \left(\right. 22 - x \left.\right)}{25} = 2 \cdot \frac{x + 3}{5} \sqrt{3 x - 2}\)
Vì \(x \geq \frac{2}{3} \Rightarrow x \neq - 3\), chia cho \(x + 3\) và nhân quy đồng:
\(22 - x = 10 \sqrt{3 x - 2}\)
Bình phương lần nữa:
\(\left(\right.22-x\left.\right)^2=100\left(\right.3x-2\left.\right)\Longrightarrow x^2-344x+684=0\)
⇒x ∈ {2,342}
Kiểm tra với phương trình gốc:
- \(x = 2 : \textrm{ }\textrm{ } \sqrt{9} - \sqrt{4} = 1 = \frac{2 + 3}{5}\) (đúng).
- \(x = 342 : \textrm{ }\textrm{ } 37 - 32 = 5 \neq \frac{345}{5} = 69\) (loại).
Vậy nghiệm duy nhất là : \(x = 2\).
ĐKXĐ: \(x\ge\frac23\)
Ta có: \(\sqrt{4x+1}-\sqrt{3x-2}=\frac{x+3}{5}\)
=>\(\sqrt{4x+1}-3+2-\sqrt{3x-2}=\frac{x+3}{5}-1\)
=>\(\frac{4x+1-9}{\sqrt{4x+1}+3}+\frac{4-3x+2}{2+\sqrt{3x-2}}=\frac{x-2}{5}\)
=>\(\frac{4x-8}{\sqrt{4x+1}+3}+\frac{-3\left(x-2\right)}{\sqrt{3x-2}+2}=\frac{x-2}{5}\)
=>\(\left(x-2\right)\left(\frac{4}{\sqrt{4x+1}+3}-\frac{3}{\sqrt{3x-2}+2}-\frac15\right)=0\)
=>x-2=0
=>x=2(nhận)

b/ Xác định điều kiện xác định ta có
\(\hept{\begin{cases}2-x^2+2x\ge0\\-7x-8\ge0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}1-\sqrt{3}\le x\le1+\sqrt{3}\\x\le\frac{-8}{7}\end{cases}}\)
=> Tập xác định của phương trình là tập rỗng nên phương trình vô nghiệm
Cái đề đúng không thế cháu hình như bị vô nghiệm hết cả 2 bài luôn

1. \(\sqrt{x^2-4}-x^2+4=0\)( ĐK: \(\orbr{\begin{cases}x\ge2\\x\le-2\end{cases}}\))
\(\Leftrightarrow\sqrt{x^2-4}=x^2-4\)
\(\Leftrightarrow\left(x^2-4\right)^2=x^2-4\)
\(\Leftrightarrow\left(x^2-4\right)^2-\left(x^2-4\right)=0\)
\(\Leftrightarrow\left(x^2-4\right)\left(x^2-4-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2=4\\x^2=5\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\pm2\left(tm\right)\\x=\pm\sqrt{5}\left(tm\right)\end{cases}}\)
Vậy pt có tập no \(S=\left\{2;-2;\sqrt{5};-\sqrt{5}\right\}\)
2. \(\sqrt{x^2-4x+5}+\sqrt{x^2-4x+8}+\sqrt{x^2-4x+9}=3+\sqrt{5}\)ĐK: \(\hept{\begin{cases}x^2-4x+5\ge0\\x^2-4x+8\ge0\\x^2-4x+9\ge0\end{cases}}\)
\(\Leftrightarrow\sqrt{x^2-4x+5}-1+\sqrt{x^2-4x+8}-2+\sqrt{x^2-4x+9}-\sqrt{5}=0\)
\(\Leftrightarrow\frac{x^2-4x+4}{\sqrt{x^2-4x+5}+1}+\frac{x^2-4x+4}{\sqrt{x^2-4x+8}+2}+\frac{x^2-4x+4}{\sqrt{x^2-4x+9}+\sqrt{5}}=0\)
\(\Leftrightarrow\left(x-2\right)^2\left(\frac{1}{\sqrt{x^2-4x+5}+1}+\frac{1}{\sqrt{x^2-4x+8}+2}+\frac{1}{\sqrt{x^2}-4x+9+\sqrt{5}}\right)=0\)
Từ Đk đề bài \(\Rightarrow\frac{1}{\sqrt{x^2-4x+5}+1}+\frac{1}{\sqrt{x^2-4x+8}+2}+\frac{1}{\sqrt{x^2}-4x+9+\sqrt{5}}>0\)
\(\Rightarrow\left(x-2\right)^2=0\)
\(\Leftrightarrow x=2\left(tm\right)\)
Vậy pt có no x=2
\(\sqrt{4x^2-4x+9}=3\\ \Rightarrow4x^2-4x+9=9\\ \Rightarrow4x\left(x-1\right)=0\\ \Rightarrow\left[{}\begin{matrix}4x=0\\x-1=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
Ta có: \(\sqrt{4x^2-4x+9}=3\)
\(\Leftrightarrow4x^2-4x=0\)
\(\Leftrightarrow4x\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)