K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 2 2018

\(a,\left(x+1\right)^2=x^2-2x-3\)

\(\Leftrightarrow\left(x+1\right)^2=x^2-3x+x-3\)

\(\Leftrightarrow\left(x+1\right)^2=x\left(x-3\right)+\left(x-3\right)\)

\(\Leftrightarrow\left(x+1\right)^2=\left(x+1\right)\left(x-3\right)\)

\(\Leftrightarrow\left(x+1\right)^2-\left(x+1\right)\left(x-3\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x+1-x+3\right)=0\)

\(\Leftrightarrow4\left(x+1\right)=0\)

\(\Leftrightarrow x+1=0\)

\(\Leftrightarrow x=-1\)

Vậy pt có tập nghiệm S = { - 1 }

b, ĐKXĐ :\(\left\{{}\begin{matrix}1-2x\ne0\\1+2x\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne\dfrac{1}{2}\\x\ne-\dfrac{1}{2}\end{matrix}\right.\)

\(\dfrac{3}{1-2x}=\dfrac{2}{1+2x}-\dfrac{3x+12}{1-4x^2}\)

\(\Leftrightarrow\dfrac{3\left(1+2x\right)}{\left(1-2x\right)\left(1+2x\right)}=\dfrac{2\left(1-2x\right)}{\left(1+2x\right)\left(1-2x\right)}-\dfrac{3x+12}{\left(1-2x\right)\left(1+2x\right)}\)

\(\Rightarrow3+6x=2-4x-3x-12\)

\(\Leftrightarrow6x+4x+3x=2-12-3\)

\(\Leftrightarrow13x=-13\)

\(\Leftrightarrow x=-1\) ( t/m )

Vậy pt có tập nghiệm S = { - 1 }

24 tháng 3 2017

a/ 4x + 20 = 0

⇔4x = -20

⇔x = -5

Vậy phương trình có tập nghiệm S = {-5}

b/ 2x – 3 = 3(x – 1) + x + 2

⇔ 2x-3 = 3x -3+x+2

⇔2x – 3x = -3+2+3

⇔-2x = 2

⇔x = -1

Vậy phương trình có tập nghiệm S = {-1}
 

24 tháng 3 2017

câu tiếp theo

a/ (3x – 2)(4x + 5) = 0

3x – 2 = 0 hoặc 4x + 5 = 0

  • 3x – 2 = 0 => x = 3/2
  • 4x + 5 = 0 => x = – 5/4

Vậy phương trình có tập nghiệm S= {-5/4,3/2}

b/ 2x(x – 3) – 5(x – 3) = 0

=> (x – 3)(2x -5) = 0

=> x – 3 = 0 hoặc 2x – 5 = 0

* x – 3 = 0 => x = 3

* 2x – 5 = 0 => x = 5/2

Vậy phương trình có tập nghiệm S = {0, 5/2}


 

25 tháng 4 2019

a) Nếu 4x-1 \(\ge\) 0 \(\Leftrightarrow\) x\(\ge\) \(\frac{1}{4}\) (*) thì phương trình trở thành:
4x-1 = x+3 \(\Leftrightarrow\) 3x = 4 \(\Leftrightarrow\) x = \(\frac{4}{3}\) (t/m (*))
Nếu 4x - 1< 0 \(\Leftrightarrow\) x < \(\frac{1}{4}\) (**) thì phương trình trở thành:
-4x+1 = x+3 \(\Leftrightarrow\) 5x = -2 \(\Leftrightarrow\) x = \(-\frac{2}{5}\) (t/m (**))
Vậy tập nghiệm của pt đã cho là S=\(\left\{\frac{4}{3};-\frac{2}{5}\right\}\)
b) Nếu 4x-1 \(\ge\) 0 \(\Leftrightarrow\) x\(\ge\) \(\frac{1}{4}\) (*) thì phương trình trở thành:
4x-1 = 5+2x \(\Leftrightarrow\) 2x = 6 \(\Leftrightarrow\) x = 3 (t/m(*))
Nếu 4x - 1< 0 \(\Leftrightarrow\) x < \(\frac{1}{4}\) (**) thì phương trình trở thành:
-4x+1 = 5+2x \(\Leftrightarrow\) 6x = -4 \(\Leftrightarrow\) x = \(-\frac{2}{3}\)(t/m(**))
Vậy tập nghiệm của pt đã cho là S=\(\left\{3;-\frac{2}{3}\right\}\)

12 tháng 4 2022

\(a,\dfrac{x-3}{x}=\dfrac{x-3}{x+3}\)\(\left(đk:x\ne0,-3\right)\)

\(\Leftrightarrow\dfrac{x-3}{x}-\dfrac{x-3}{x+3}=0\)

\(\Leftrightarrow\dfrac{\left(x-3\right)\left(x+3\right)-x\left(x-3\right)}{x\left(x+3\right)}=0\)

\(\Leftrightarrow x^2-9-x^2+3x=0\)

\(\Leftrightarrow3x-9=0\)

\(\Leftrightarrow3x=9\)

\(\Leftrightarrow x=3\left(n\right)\)

Vậy \(S=\left\{3\right\}\)

12 tháng 4 2022

\(b,\dfrac{4x-3}{4}>\dfrac{3x-5}{3}-\dfrac{2x-7}{12}\)

\(\Leftrightarrow\dfrac{4x-3}{4}-\dfrac{3x-5}{3}+\dfrac{2x-7}{12}>0\)

\(\Leftrightarrow\dfrac{3\left(4x-3\right)-4\left(3x-5\right)+2x-7}{12}>0\)

\(\Leftrightarrow12x-9-12x+20+2x-7>0\)

\(\Leftrightarrow2x+4>0\)

\(\Leftrightarrow2x>-4\)

\(\Leftrightarrow x>-2\)

8 tháng 7 2018

1/ \(1+\frac{2}{x-1}+\frac{1}{x+3}=\frac{x^2+2x-7}{x^2+2x-3}\)

ĐKXĐ: \(\hept{\begin{cases}x-1\ne0\\x+3\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ne1\\x\ne-3\end{cases}}\)

<=> \(1+\frac{2\left(x+3\right)+x-1}{\left(x-1\right)\left(x+3\right)}=\frac{x^2+2x-3-5}{x^2+2x-3}\)

<=> \(1+\frac{2x+6+x-1}{x^2+2x-3}=1-\frac{5}{x^2+2x-3}\)

<=> \(\frac{3x+5}{x^2+2x-3}+\frac{5}{x^2+2x-3}=1-1\)

<=> \(\frac{3x+5}{x^2+2x-3}+\frac{5}{x^2+2x-3}=0\)

<=> \(\frac{3x+10}{x^2+2x-3}=0\)

<=> \(3x+10=0\)

<=> \(x=-\frac{10}{3}\)

9 tháng 3 2019

Mình mới học lớp 5 (^_^)

    Sorry