Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Bạn ơi mình chưa học cài này nha
mong bạn thông cảm
thanks
![](https://rs.olm.vn/images/avt/0.png?1311)
\(8x^2-7x+13=y\left(x-1\right)^2\)
\(\Leftrightarrow\left(8x^2-8x\right)+\left(x-1\right)+14-\left(x-1\right)\left(xy-y\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(8x+1-xy+y\right)=-14\)
Đến đây xét từng trường hợp ước của -14 là ra. Bạn tự làm tiếp nhé
![](https://rs.olm.vn/images/avt/0.png?1311)
pt :
\(2x^6-2x^3y+y^2=320\Leftrightarrow x^6+\left(x^6-2x^3y+y^2\right)=320\)
\(\Leftrightarrow x^6+\left(x^3-y\right)^2=320\)
=> \(x^6\le320\Leftrightarrow-2\le x\le2\)
TH1: Nếu \(x=-2\Rightarrow x^6=64\Rightarrow\left(x^3-y\right)^2=320-64=256\Rightarrow\orbr{\begin{cases}x^3-y=-16\\x^3-y=16\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}y=x^3+16=\left(-2\right)^3+16=8\\y=x^3-16=\left(-2\right)^3-16=-24\end{cases}}\)
TH2: Nếu \(x=2\Rightarrow x^6=64\Rightarrow\left(x^3-y\right)^2=320-64=256\Rightarrow\orbr{\begin{cases}x^3-y=-16\\x^3-y=16\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}y=x^3+16=2^3+16=24\\y=x^3-16=2^3-16=-8\end{cases}}\)
TH3: Nếu \(\orbr{\begin{cases}x=-1\\x=1\end{cases}}\Rightarrow x^6=1\Rightarrow\left(x^3-y\right)^2=320-1=319\) (vô nghiệm nguyên)
TH4: Nếu \(x=0\Rightarrow x^6=0\Rightarrow\left(x^3-y\right)^2=320\)(vô nghiệm nguyên)
Vậy pt có nghiệm (x,y)=...
![](https://rs.olm.vn/images/avt/0.png?1311)
\(x^3+7x=y^3+7y\)
\(\Leftrightarrow\left(x^3-y^3\right)+\left(7x-7y\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left(x^2+xy+y^2\right)+7\left(x-y\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left(x^2+xy+y^2+7\right)=0\)
\(TH1:x-y=0\Rightarrow x=y\)
\(TH2:x^2+y^2+xy+7=0\)(pt này không có nghiêm nguyên)
Vậy x = y với x,y nguyên
\(\Leftrightarrow x^3-y^3+7x-7y=0\)
\(\Leftrightarrow\left(x-y\right)\left(x^2+xy+y^2\right)+7\left(x-y\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left(x^2+xy+y^2+7\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-y=0\\x^2+xy+y^2+7=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=y\\\left(x+\frac{y}{2}\right)^2+\frac{3y^2}{4}+7=0\end{cases}}\)
Dễ thấy rằng vế dưới là vô nghiệm
\(\Rightarrow x=y\)
Vậy \(\forall x,y\in R\)thì \(x=y\)là nghiệm của pt trên
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a, Đặt \(x^2=t\left(t\ge0\right)\)
Khi đó \(PT< =>t^1+4t-5=0\)
\(< =>t^2-1+4t-4=0\)
\(< =>\left(t-1\right)\left(t+1\right)+4\left(t-1\right)=0\)
\(< =>\left(t-1\right)\left(t+5\right)=0\)
\(< =>\orbr{\begin{cases}t=1\left(tm\right)\\t=-5\left(loai\right)\end{cases}}\)
\(< =>x^2=1< =>\orbr{\begin{cases}x=-1\\x=1\end{cases}}\)
Vậy ...
Thay m = 2 vào , ta có :
\(PT< =>x^2-2\left(2+1\right)x+2^2+3.2-4=0\)
\(< =>x^2-6x+6=0\)
\(< =>\left(x^2-6x+9\right)-\sqrt{3}^2=0\)
\(< =>\left(x-3-\sqrt{3}\right)\left(x-3+\sqrt{3}\right)=0\)
\(< =>\orbr{\begin{cases}x=3+\sqrt{3}\\x=3-\sqrt{3}\end{cases}}\)
a.
\(x^2-4xy=23\)
\(\Leftrightarrow x\left(x-4y\right)=23\)
Ta co:
\(23=1.23=23.1=\left(-1\right).\left(-23\right)=\left(-23\right).\left(-1\right)\)
TH1:
\(\left\{{}\begin{matrix}x=1\\x-4y=23\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-\frac{11}{2}\end{matrix}\right.\)(loai)
TH2:
\(\left\{{}\begin{matrix}x=23\\x-4y=1\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x=23\\y=\frac{11}{2}\end{matrix}\right.\)(loai)
TH3:
\(\left\{{}\begin{matrix}x=-1\\x-4y=-23\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=\frac{11}{2}\end{matrix}\right.\)(loai)
TH4:
\(\left\{{}\begin{matrix}x=-23\\x-4y=-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-23\\y=-\frac{11}{2}\end{matrix}\right.\)(loai)
Vay khong co ngiem nguyen nao thoa man phuong trinh