
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Cho bạn kết quả phân tích thôi, tự phân tích nha:D
a) \(\Leftrightarrow2\left(x+4\right)\left(x+10\right)\left(x^2+14x+64\right)=0\)
b)\(\Leftrightarrow2\left(x-3\right)\left(x-4\right)\left(x^2-7x+26\right)=0\)
Dạng này thì em : \(\frac{6+8}{2}=7\).
Đặt x + 7 =t
=> Phương trình ban đầu trở thành: \(\left(t+1\right)^4+\left(t-1\right)^4=272\)
<=> \(\left(t^4+4t^3+6t^2+4t+1\right)+\left(t^4-4t^3+6t^2-4t+1\right)=272\)
<=> \(2t^4+12t^2+2=272\)
<=> \(t^4+6t^2-135=0\)
<=> \(t^4+6t^2+9=144\)
<=> \(\left(t^2+3\right)^2=12^2\)
<=> \(\orbr{\begin{cases}t^2+3=12\\t^2+3=-12\end{cases}}\Leftrightarrow\orbr{\begin{cases}t^2=9\left(tm\right)\\t^2=-15\left(l\right)\end{cases}}\Leftrightarrow t=\pm3\)
Với t = 3 có: x + 7 = 3 <=> x =-4
Với t = -3 có: x +7 =-3 <=> x = -10
b) pt \(\left(5-x\right)^4+\left(2-x\right)^4=17\)<=> \(\left(x-5\right)^4+\left(x-2\right)^4=17\)
Tương tự: \(\frac{5+2}{2}=\frac{7}{2}\)
Đặt: \(x-\frac{7}{2}=t\)
pt trở thành: \(\left(t-\frac{3}{2}\right)^4+\left(t+\frac{3}{2}\right)^4=17\)
<=> ....
Làm thử tiếp nha.
Chú ý công thức : \(\left(a\pm b\right)^4=a^4\pm4a^3b+6a^2b^2\pm4ab^3+b^4\)

a)
\((x-3)(x-5)(x-6)(x-10)=24x^2\)
\(\Leftrightarrow [(x-3)(x-10)][(x-5)(x-6)]=24x^2\)
\(\Leftrightarrow (x^2-13x+30)(x^2-11x+30)=24x^2\)
Đặt \(x^2-11x+30=a\). PT trở thành:
\((a-2x)a=24x^2\)
\(\Leftrightarrow a^2-2ax-24x^2=0\)
\(\Leftrightarrow a^2-6ax+4ax-24x^2=0\)
\(\Leftrightarrow a(a-6x)+4x(a-6x)=0\)
\(\Leftrightarrow (a+4x)(a-6x)=0\)
\(\Rightarrow \left[\begin{matrix} a+4x=0\\ a-6x=0\end{matrix}\right.\Rightarrow \left[\begin{matrix} x^2-7x+30=0\\ x^2-17x+30=0\end{matrix}\right.\)
\(\Rightarrow \left[\begin{matrix} (x-3,5)^2+17,75=0(\text{vô lý})\\ (x-15)(x-2)=0\end{matrix}\right.\)
\(\Rightarrow x=15\) hoặc $x=2$
b)
Đặt \(x-7=a\). PT trở thành:
\((a+1)^4+(a-1)^4=272\)
\(\Leftrightarrow a^4+4a^3+6a^2+4a+1+a^4-4a^3+6a^2-4a+1=272\)
\(\Leftrightarrow 2a^4+12a^2+2=272\)
\(\Leftrightarrow a^4+6a^2-135=0\)
\(\Leftrightarrow (a^2+3)^2-144=0\Leftrightarrow (a^2+3)^2-12^2=0\)
\(\Leftrightarrow (a^2+15)(a^2-9)=0\)
\(\Rightarrow a^2-9=0\Rightarrow a=\pm 3\)
\(\Rightarrow x=a+7=\left[\begin{matrix} 4\\ 10\end{matrix}\right.\)

\(\left(x+1\right)^4+\left(x+3\right)^4=272\)
mk thấy đề sai thì phải,sửa nha.
\(\left(x+1\right)^4+\left(x+3\right)^4=256\)
\(\left(x+1\right)^4+\left(x+3\right)^4=4^4\)
TH1 : \(\left(x+1\right)+\left(x+3\right)=4\)
\(x+1+x+3=4\)
\(2x+4=4\Leftrightarrow2x=0\Leftrightarrow x=0\)
TH2 : \(\left(x+1\right)+\left(x+3\right)=-4\)
\(x+1+x+3=-4\)
\(2x+4=-4\Leftrightarrow2x=-8\Leftrightarrow x=-4\)
Lâu lâu chưa lạm dụng đến,chỉ nhớ bình phương chia 2 TH thôi,có j thông cảm ạ.

b) Đặt \(x-7=a\) ta có:
\(\left(a+1\right)^4+\left(a-1\right)^4=16\)
\(\Leftrightarrow\)\(a^4+4a^3+6a^2+4a+1+a^4-4a^3+6a^2-4a+1=16\)
\(\Leftrightarrow\)\(2a^4+12a^2+2-16=0\)
\(\Leftrightarrow\)\(2\left(a^4+6a^2-7\right)=0\)
\(\Leftrightarrow\)\(a^4+6a^2-7=0\)
\(\Leftrightarrow\)\(\left(a-1\right)\left(a+1\right)\left(a^2+7\right)=0\)
Vì \(a^2+7>0\) nên \(\orbr{\begin{cases}a-1=0\\a+1=0\end{cases}}\)
Thay trở lại ta có: \(\orbr{\begin{cases}x-8=0\\x-6=0\end{cases}}\) \(\Leftrightarrow\)\(\orbr{\begin{cases}x=8\\x=6\end{cases}}\)
Vậy...

a) Ta thấy x - 1 \(\ne\)0 vì x = 1 không nghiệm đúng phương trình
Nhân hai vế của phương trình với x - 1 \(\ne\)0 ta được x5 -1 = 0 hay x = 1 ,không thỏa mãn điều kiện trên .
Vậy phương trình vô nghiệm .
b) Ta có : \(\frac{\left(x-2\right)^2}{3}-\frac{\left(2.x-3\right).\left(2.x+3\right)}{8}+\frac{\left(x-4\right)^2}{6}\)
<=> 3.(x-2)2 - 3. ( 2.x - 3 ) . ( 2.x + 3 )+ 4. ( x-4 )2 = 0
<=> 3. ( x - 4.x + 4 ) - 3. ( 4.x2 -9 ) + 4. ( x2 -8.x + 16 ) = 0
<=> -5.x2 -44.x + 103 = 0
<=> \(\orbr{\begin{cases}x=\frac{-22+3\sqrt{111}}{5}\\x=\frac{-22-3\sqrt{111}}{5}\end{cases}}\)
Vậy \(\orbr{\begin{cases}x=\frac{-22+3\sqrt{111}}{5}\\x=\frac{-22-3\sqrt{111}}{5}\end{cases}}\)
a) Ta thấy x - 1 \(\ne\)0 vì x = 1 không nghiệm đúng phương trình
Nhân hai vế của phương trình với x - 1 \(\ne\)0 ta được x5 -1 = 0 hay x = 1 ,không thỏa mãn điều kiện trên .
Vậy phương trình vô nghiệm .
b) Ta có : \(\frac{\left(x-2\right)^2}{3}-\frac{\left(2.x-3\right).\left(2.x+3\right)}{8}+\frac{\left(x-4\right)^2}{6}\)
<=> 3.(x-2)2 - 3. ( 2.x - 3 ) . ( 2.x + 3 )+ 4. ( x-4 )2 = 0
<=> 3. ( x - 4.x + 4 ) - 3. ( 4.x2 -9 ) + 4. ( x2 -8.x + 16 ) = 0
<=> -5.x2 -44.x + 103 = 0
<=> \(\orbr{\begin{cases}x=\frac{-22+3\sqrt{111}}{5}\\x=\frac{-22-3\sqrt{111}}{5}\end{cases}}\)
Vậy \(\orbr{\begin{cases}x=\frac{-22+3\sqrt{111}}{5}\\x=\frac{-22-3\sqrt{111}}{5}\end{cases}}\)
Đặt \(x+7=a\)
\(pt\Leftrightarrow\left(a-1\right)^4+\left(a+1\right)^4=272\)
\(\Leftrightarrow a^4-4a^3+6a^2-4a+1+a^4+4a^3+6a^2+4a+1=272\)
\(\Leftrightarrow2a^4+12a^2+2=272\)
\(\Leftrightarrow2a^4+12a^2-270=0\)
\(\Leftrightarrow2\left(a^4+6a^2-135\right)=0\)
\(\Leftrightarrow a^4-3a^3+3a^3-9a^2+15a^2-45a+45a-135=0\)
\(\Leftrightarrow a^3\left(a-3\right)+3a^2\left(a-3\right)+15a\left(a-3\right)+45\left(a-3\right)=0\)
\(\Leftrightarrow\left(a-3\right)\left(a^3+3a^2+15a+45\right)=0\)
\(\Leftrightarrow\left(a-3\right)\left[a^2\left(a+3\right)+15\left(a+3\right)\right]=0\)
\(\Leftrightarrow\left(a-3\right)\left(a+3\right)\left(a^2+15\right)=0\)
Vì \(a^2+15>0\forall x\)
\(pt\Leftrightarrow\left(a-3\right)\left(a+3\right)=0\)
Thay \(a=x+7\)ta có pt :
\(\left(x+7-3\right)\left(x+7+3\right)=0\)
\(\Leftrightarrow\left(x+4\right)\left(x+10\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=-4\\x=-10\end{cases}}\)
Vậy....