
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.




Bạn nên viết đề bằng công thức toán để được hỗ trợ tốt hơn (biểu tượng $\sum$ góc trái khung soạn thảo). Viết thế này khó dịch quá.

Câu 1:
Dễ thấy phương trình có x=2 là 1 nghiệm.
Mặt khác ta có: vế trái luôn nghịch biến do
Vậy phương trình có nghiệm duy nhất x=2
Câu 2:
Áp dụng bất đẳng thức Côsi ta có:
Dễ thấy chỉ xảy ra khi
Mặt khác khi thay x=2 vào vế trái được VT bằng
Vậy kết luận phương trình đã cho vô nghiệm.
Câu 3:
Tương tự phương pháp như câu 2 ta có:
Vế phải
mà
Vậy nên chỉ có thể xảy ra khi
Mặt khác ta có để
Thay x=0 vào (1) được (Thoả mãn)
Vậy phương trình đã cho có nghiệm x=0

1 ) đặt ẩn phụ
căn(x+4) = a
căn(4-x) = b
=> a^2 + b^2 = 8 ; a^2 - b^2 = 2x
Thay vào phương trình giải rất dễ
2) điều kiện xác định " x lớn hơn hoặc = 1
từ ĐKXĐ => vế trái lớn hơn hoặc = 1
=> 2 - x lớn hơn hoặc = 1
=> x nhỏ hơn hoặc = 1
kết hợp ĐKXĐ => x = 1
3) mk chưa biết làm

a)Ta có : \(\sqrt{x}=x\left(DK:x\ge0\right)\)
\(\Leftrightarrow x=x^2\Leftrightarrow x^2-x=0\Leftrightarrow x\left(x-1\right)=0\Rightarrow x=0\)(nhận ) hoặc \(x=1\)(Nhận)
Vậy tập nghiệm của phương trình là : \(S=\left\{0;1\right\}\)
b) \(\sqrt{x^2+x+1}=x+2\left(DK:x\ge-2\right)\)
\(\Leftrightarrow x^2+x+1=\left(x+2\right)^2\)\(\Leftrightarrow x^2+x+1=x^2+4x+4\Leftrightarrow3x=-3\Leftrightarrow x=-1\)( Nhận)
Vậy tập nghiệm của phương trình là : \(S=\left\{-1\right\}\)
c) \(\sqrt{x^2-10x+25}=x-3\left(DK:x\ge3\right)\)
\(\Leftrightarrow\sqrt{\left(x-5\right)^2}=x-3\Leftrightarrow\left|x-5\right|=x-3\)(1)
Đến đây ta xét hai trường hợp :
1. Với \(3\le x< 5\)phương trình (1) tương đương với :
\(5-x=x-3\Leftrightarrow2x=8\Leftrightarrow x=4\)(Nhận)
2. Với \(x\ge5\)phương trình (1) tương đương với :
\(x-5=x-3\Rightarrow-5=-3\)( vô lí )
Vậy tập nghiệm của phương trình là : \(S=\left\{4\right\}\)
c) \(\sqrt{x-2}+\sqrt{2-x}=0\)
Ta có điều kiện xác định của phương trình là : \(\hept{\begin{cases}x-2\ge0\\2-x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge2\\x\le2\end{cases}\Rightarrow}x=2}\)
Thử lại với x = 2 ta thấy thoả mãn nghiệm của phương trình.
Vậy tập nghiệm của phương trình là : \(S=\left\{2\right\}\)